Preparation and Characterization of Deoxycholic Acid-Conjugated Low Molecular Weight Water-Soluble Chitosan Nanoparticles for Hydrophobic Antifungal Agent Carrier

소수성 항진균제 전달체로 응용하기 위한 데옥시콜릭산이 결합된 저분자량 수용성 키토산 나노입자의 제조와 특성

  • Choi, Chang-Yong (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University) ;
  • Jung, Hyun (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University) ;
  • Nam, Joung-Pyo (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University) ;
  • Park, Yoon-Kyung (Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, College of Engineering, Sunchon National University)
  • 최창용 (순천대학교 고분자공학과) ;
  • 정현 (순천대학교 고분자공학과) ;
  • 남정표 (순천대학교 고분자공학과) ;
  • 박윤경 (조선대학교 생명공학과) ;
  • 장미경 (순천대학교 고분자공학과) ;
  • 나재운 (순천대학교 고분자공학과)
  • Published : 2009.07.25

Abstract

To develop the carrier of hydrophobic antifungal agents based on low molecular weight water-soluble chitosan (LMWSC), LMWSC was chemically modified with deoxycholic acid (DA) which is one of the bile acid as a hydrophobic group. The nanoparticles (WSCDA) using DA conjugated LMWSC were characterized using dynamic light scattering (DLS) and transmittance electron microscope (TEM). The particle size of WSCDA ranged from 250 to 350 nm and increased with the number of DA substitution. The loaded itraconazole as an antifungal agent WSCDA nanoparticles (WSCDA-ITCN) were prepared by solvent evaporation method. The drug content and the loading efficiency were investigated approximately $9{\sim}10%$ and $61{\sim}68%$ by UV spectrophotometer, respectively. The release of drug from nanoparticles was slow and showed sustained release characteristics. Based on the results of release study that the higher DA contents in WSCDA, the slower the releasing rate, the WSCDA-ITCN could be used as an excellent antifungal agent.

저분자량수용성 키토산(LMWSE)을 소수성 항진균제 전달체로 응용하기 위하여, 데옥시콜릭산(deoxycholic acid, DA)을 이용하여 LMWSE를 화학적으로 개질하였다. DA가 결합된 LMWSC 나노입자(WSEDA)의 특성은 동적 광산란기, 투과전자현미경을 이용하여 그 특성을 분석하였다. 제조되어진 나노입자의 크기는 $250{\sim}350\;nm$로 DA의 치환도가 증가함에 따라 입자의 크기가 증가하였다. 항진균제인 이트라코나졸(itraconazole)이 봉입된 WSEDA 나노입자(WSEDA-ITCN)는 소수성 상호작용을 이용한 용매 증발법으로 제조하였다. UV 분광광도계를 이용하여 약물의 함량 및 담지 효율을 측정한 결과 약물의 담지 효율은 $61{\sim}68%$로 우수한 담지 효율을 보였다. 약물방출 거동에서 이트라코나졸이 봉입된 나노파티클의 DA의 함량이 많아질수록 약물이 천천히 방출되었다. 이상의 결과로부터 본 연구에서 제조한 DA가 결합된 저분자량 수용성 키토산 나노파티클이 항진균제 전달체로서 매우 높은 응용 가능성을 나타내고 있음을 확인하였다.

Keywords

References

  1. J. -W. Nah and M. -K. Jang, J. Polym. Sci. PartA: Polym. Chem., 40, 3796 (2002) https://doi.org/10.1002/pola.10463
  2. I. Ikeda, M. Sugano, K. Yoshida, E. Sasaki, Y. Iwamoto, and K. Hatano. J. Agric. Food Chem., 41, 431 (1993) https://doi.org/10.1021/jf00027a016
  3. R. A. A. Muzzarelli, C. Lough, and M. Emanuelli, Caborhydr. Res., 8, 433 (1987)
  4. Y. Sawayanagi, N. Nambu, and T. Nagai, Chem. Pharm. Bull., 31, 2507 (1983) https://doi.org/10.1248/cpb.31.2507
  5. W. Paul and C. P. Sharma, S. T. P. Phama Science, 10, 5 (2000)
  6. M. Lee, J. Nah, Y. Kwon. J. Koh, K. Ko, and S. W. Kim, Phamaceut. Res., 18, 427 (2001) https://doi.org/10.1023/A:1011037807261
  7. M. J. Jang, D. G. Kim. Y. I. Jeong, M. -K. Jang, and J. -W. Nah, Polymer(Korea), 31, 555 (2007)
  8. J. P. Behr, Acc. Chem. Res., 26, 274 (1993) https://doi.org/10.1021/ar00029a008
  9. E. Wagner and M. Cotton, Curr. Opin. Biotechnol., 4, 705 (1993) https://doi.org/10.1016/0958-1669(93)90053-Y
  10. T. Chandy and C. P. Sharma. Art Cells Art. Org., 18, 1 (1990) https://doi.org/10.3109/10731199009117286
  11. J. S. Park, J. C. Yang, S. H. Yuk, H. S. Shin, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea)., 31, 189 (2007)
  12. J. Q. Del Rosso and A. K. Gupta, Today's Therapeutic Trends, 15, 179 (1997)
  13. J. Q. Del Rosso, S. Zellis, and A. K. Gupta, J. Am. Osteopath. Assoc., 98, 497 (1998)
  14. J. G. Hickman, J. Am. Acad. Dermatol., 34, 785 (1996) https://doi.org/10.1016/S0190-9622(96)90014-6
  15. J. Delescluse, J. Am. Acad. Dermatol., 23, 551 (1990) https://doi.org/10.1016/0190-9622(90)70252-D
  16. J. Q. Del Rosso and A. K. Gupta, Int. J. Dermatol., 38, 28 (1999) https://doi.org/10.1046/j.1365-4362.1999.00011.x
  17. R. Alcantara and J. M. Garibay, Adv. Ther., 5, 26 (1998)
  18. G. Dongowski, B. Fritzsch, J. Giessler, A. Härtl, O. Kuhlmann, and R. H. H. Neubert, Eur. J. Pharm. Biopharm., 60, 147 (2005) https://doi.org/10.1016/j.ejpb.2005.01.003
  19. T. Maeda, H. Takenaka, Y. Yamahira, and T. Noguchi, J. Pharm. Sci., 68, 1286 (1979) https://doi.org/10.1002/jps.2600681023
  20. Y. Chiba, N. Kohri, K. Iseki, and K. Miyazaki, Chem. Pharm. Bull., 39, 2158 (1991) https://doi.org/10.1248/cpb.39.2158
  21. S. Y. Chae, S. Son, M. Lee, M. -K. Jang, and J. -W. Nah, J. Control. Release, 109, 330 (2005) https://doi.org/10.1016/j.jconrel.2005.09.040
  22. S. Kwon. J. H. Park, H. Chung, I. C. Kwon, S. Y. Jeong, and I. -S. Kim, Langmuir, 19, 10188 (2003) https://doi.org/10.1021/la0350608