Bio-Degradable Plastic Mulching in Sweetpotato Cultivation

생분해성 멀칭필름을 이용한 고구마 재배

  • Lee, Joon-Seol (Bio-energy crop research center, National Institute of Crop Science, RDA) ;
  • Jeong, Kwang-Ho (National Institute of Crop Science, RDA) ;
  • Kim, Hag-Sin (Department of Rice and Winter Ceral Crop, National Institute of Crop Science, RDA) ;
  • Kim, Jeong-Ju (National Institute of Crop Science, RDA) ;
  • Song, Yeon-Sang (Bio-energy crop research center, National Institute of Crop Science, RDA) ;
  • Bang, Jin-Ki (National Institute of Crop Science, RDA)
  • 이준설 (국립식량과학원 바이오에너지작물센터) ;
  • 정광호 (국립식량과학원) ;
  • 김학신 (국립식량과학원 벼맥류부) ;
  • 김정주 (국립식량과학원) ;
  • 송연상 (국립식량과학원 바이오에너지작물센터) ;
  • 방진기 (국립식량과학원)
  • Published : 2009.06.30

Abstract

This experiment was conducted to determine the usability of biodegradable plastic in the mulching cultivation of sweetpotato. For this, we investigated the physical characteristics, biodegradability, leaching, yield, workability, etc. of biodegradable films. Compared with general mulching materials, biodegradable Poly butyleneadipate-co-butylene succinate (PBSA) and PLC+starch showed $2{\sim}27$% higher tensile strength, but $2{\sim}22$% lower elongation and $2{\sim}6$% lower tear strength. In the leaching test on the biodegradable films, heavy metals were detected very little or not at all. As to difference in ground temperature according to mulching material, the temperature was high in order of PLC+starch > PBSA > Low Density Polyethylene (LDPE) > Control during the period from late June to mid July, but in order of LDPE > PLC+starch > PBSA > None during the period from late July to late September. In the mulching cultivation of sweet potato, biodegradable films PBSA (EA, EB, EC) and PLC+starch (DD, DE, DF) began to degrade after 60 days from the cut planting of sweet potato, and over 95% degraded after 120 days. The quantity of roots was 3,070 kg/10a for PBSA, 3,093 kg/10a for PLC-starch, and 2,946 kg/l10a for LDPE, showing no significant difference according to mulching material. Considering the physical characteristics, biodegradability, environment, convenience in harvesting work, yield, etc. of the films in the mulching cultivation of sweet potato, biodegradable films are expected to be very useful.

고구마 멀칭재배에서 생분해성 플라스틱 피복재 이용 가능성을 검토하고자 시험을 수행 한 결과 다음과 같다. 1. 필름의 물성은, 생분해성인 PBSA와 PLC + Starch는 일반멀칭재료인 LDPE 에 비하여 인장강도는 $2{\sim}27$% 상승하였으나 신율은 $2{\sim}22$% 낮았고, 인열강도도 $2{\sim}6$%가 낮았다. 2. 피복기간에 따른 인장강도의 변화는 생분해성 필름의 경우 피복 후 $60{\sim}70$%일 동안 급격히 감소하다가 그 후 완만한 감소를 보였고 제조 원료별로는 PLC + Starch가 PBSA에 비하여 변화율이 낮았다. 3. 신율의 변화는 피복 후 $60{\sim}70$%일 동안 매우 급격히 감소하다가 그 후 완만한 감소를 보였다. 제조 원료별로는 PLC + Starch와 PBSA 제품간의 뚜렷한 차이는 보이지 않았으나 15 ${\mu}m$ PBSA의 경우 $60{\sim}70$%일이 지나면서 급격한 물성저하를 보였다. 4. 생분해성 필름에 대한 용출시험에서는 중금속들이 아주 작거나 검출되지 않았고, 국내 환경마크협회가 정하는 생분해성 수지 제품에 대한 유해물질 함량기준을 충족하였다. 5. 멀칭재료간의 윌별 지온차이는, 6월 하순${\sim}$7월 중순에는 PLC + starch > PBSA > LDPE > None 순으로 온도가 높아지는 경향을 보이다가 7월 하순${\sim}$9월 하순에는 LDPE > PLC + starch > PBSA > None 순으로 온도가 높아졌다. 6. 고구마 멀칭재배 후 분해양상은, 생분해성 필름 PBSA(EA, EB, EC)과 PLC + Starch(DD, DE, DF)는 고구마 삽식 후 60일이 지나면서 분해되기 시작하였고, 수확기인 120일이 지나서는 95%이상이 분해되었다. 7. 피복재별 괴근 수량은 PBSA는 3,070 kg/10a, PLC + Starch은 3,093 kg/10a, LDPE는 2,946 kg/10a으로 멀칭재료간에 뚜렷한 차이를 나타내지 않았다. 이상을 종합하여 볼 때 고구마 재배에서 생분해성인 PBSA와 PLC + Starch와 같은 필름을 사용한다면, 필름의 물성, 분해도, 환경친화성, 수확작업의 간편성 등을 고려해볼 때 실제 농업현장에서 이용 가치가 매우 높을 것으로 생각된다.

Keywords

References

  1. 과학기술부/환경부. 2003. Development of Triboelectrostatic Separation Technique for Recycling of Waste Plastic. 산업폐기물재활용기술개발사업보고서
  2. 김말남. 2002. 퇴비화 조건에서 플라스틱의 생분해성 평가. 연구결과보고서
  3. 농촌진흥청. 1998. Development of Biodegradable Mulching Films. 인하대학교 공과대학 고분자공학과 보고서
  4. 농촌진흥청. 2002. 고구마 생산과 이용. 52-58
  5. 농촌진흥청. 2007. 주요품목별 기술 전략. 152-171
  6. 상지대학교 2003. 완전 생분해성 콤포스트백 제조기술. 중소기업 기술혁신개발사업 최종보고서. 29-38
  7. Adam, J. E. 1967. Effect of mulches and bed congiguration 1. Early season soil temperature and emergence of grain sorghum and com. Agron. J. 59 : 595-599 https://doi.org/10.2134/agronj1967.00021962005900060032x
  8. Albertsson, A. c., C. Barenstedt, and S. Karlsson. 1992. Susceptibility of enhanced environmentally degradable polyethylene to thermal and photo-oxidation. Polymer Deg. and Stabil. 37 : 163-168 https://doi.org/10.1016/0141-3910(92)90080-O
  9. ASTM D3826-98. 1998. Standard Practice for Determining Degradation End point in Degradable polyethylene and Polypropylene Using a Tensile Test. American Society of Testing and Materials. Philadelphia, USA.
  10. Bloembergen, S., J. David, D. Geyer, A. Gustafson, J. Snook, and R. Narayan. Biodegradation and composing studies of polymeric materials. Biodegradation Plastic and Polymers. Doi, Y and Fukuda, K. (eds). Osaka Japan. 601-609
  11. Chung, M. S., W. H. Lee, Y S. You, H. Y Kim, and K. M. Park. 2003. Manufacturing Multi-degradable Food Packaging Films and Their Degradibility. Korean J. Food. Sci. Technol. 35(5) : 877-883
  12. Cui, R. x, B. W. Lee, and H. L. Lee. 2000. Growth and Yield of Potato as Affected by Paper, Oil-treated Paper and Ureacoated Paper Mulching in Spring Season Culture. Korean J. Crop Sci. 45(3): 216-219
  13. Doane, W. M. 1992. USDA research on starch-based biodegradable plastics. Starch. 44 : 292-295 https://doi.org/10.1002/star.19920440805
  14. Garcia, C., T. Hernandes, and F. Cotea. 1992. Comparison of humic acids derived from city refuse with more developed humic acids. Soil Sci. Plant Nutr. 38 : 339-346 https://doi.org/10.1080/00380768.1992.10416498
  15. Huag, J. H., A. S. Shetty, and M. S. Wang. 1990. Biodegradable plastic. a review. Adv. Polym. Technol. 10 : 23-30 https://doi.org/10.1002/adv.1990.060100103
  16. Hwang, H. J., J. K. Suh, I. J. Ha, and Y W. Ryu. 1996. Effects of Planting Time and Mulching Material on Growth and Seed Yield for Seed Production Culture in Onion. RDA. J. Agri. Sci. 38(1) : 640-647
  17. Jung B. W., C. H. Shin, Y J. Kim, S. H. Jang, and B. Y Shin. 1999. A study on the biodegradability of plastic films under controlled composing condition. J. Int. Industrial Technol. 27 : 107-116
  18. Kim, H. K., and B. H. Hong. 1996. Effects of Mulching Materials on Physical Properties of Soil and Grain Yield of Sesame. Korean J. Crop Sci. 31(3) : 260-269
  19. Lee S. I., S. H. Sur, K. M. Hong, Y S. Shin, S. H. Jang, and B. Y. Shin. 2001. A study on the properties of fully biophotodegradable composite film. J. Int. Industrial Technol. 29 : 129-134
  20. Narayan, R. 1993. Impact of governmental policies, regulations, standards activities on an emerging biodegradable plastic industry In : Biodegradable Plastics and Polymers. Doi, Y. and Fukuda, K. (eds). Osaka. 261-272
  21. Nakasuka, S. and A. L. Andrady. 1992. Themo-gravimetric determination of starch content in starch-polyethylene blend films. J. Appl. Polyms. Sci. 45 : 1881-1887 https://doi.org/10.1002/app.1992.070451102
  22. Ryu, K. E., and Y B. Kim. 1998. Biodegradation of polymers. Polymer Sci. Technol. 9 : 464-472
  23. Scott, G. 1990. Photo-degradable plastic : Their role in the protection of the environment Polymer. Deg. and Stabil. 29 : 136-143
  24. Schonbeck, M. W. 1995. Evaluation of recycled paper film mulch and organic mulches as alternatives to black plastic mulch in vegetable horticulture. Agriculture in Concert with the Environment ACE research projects Southern Region
  25. Shin, B. Y, H. B. Lee, and M. H. Cho. 1995. Photodegradable of HDPE film containing mechanically induced photosensitive groups. Environ. Res. 15 : 31-40
  26. Shin, B. Y., S. H. Jang, and B. W. Jung. 1997. A study on the photo-biodegradable film containing calcium carbonate. starch and crab shell. J. Int. Industrial Technol. 25 : 103119
  27. Woolfe, J. A. 1992. Sweet potato. Cambridage University Press. New York