Temporal and Spatial Characteristics in the Pollen Flow of Living Modified Rice

유전자변형 벼로부터 일어나는 화분비산의 시공간적 특성

  • Published : 2009.06.30

Abstract

Pollen flow is one of the essential components in the ecological risk assessment of transgenic crops, because pollen can act as a vehicle to disseminate transferred alien genes. Pollen flow pattern of a cultivated rice variety and Living modified (LM) rice was studied at diurnal and distance changes under field. We measured airborne pollen density at the distances of -1, 0.5, 0, 1, 2, 3, 4, 5, 7, 9, 11 and 13 m from rice cultivation and recorded the direction and speed of wind using weather station in the conventional rice paddy field during the flowering period of rice. Diurnal changes in pollen density were observed as a peak between 10:00 to 13:00 hr. The density of airborne rice pollen geometrically decreased with the increase of distance from pollen sources. It is therefore necessary to carry out a detailed investigation of pollen flow of a particular species, where ecological risk assessment requires an accurate estimation of pollen flow including both distance and intensity of pollen dispersal. The rice pollen flow was significantly influenced by weather conditions, particularly by wind direction and speed. The precise determination of the local wind conditions at flowering time therefore appears to be of primary importance for setting up suitable isolation distance from transgenic rice in the field.

본 연구에서 실행한 LM 벼의 화분비산 연구는 non-LM벼와 잡초성 벼의 의도치 않은 교잡은 경작지의 생태계에 문제를 야기할 기능성이 커지고 있다. 본 연구는 이를 예방하기 위한 벼의 이격거리 설정을 위하여 수행하였다. 1. 벼의 개화기간의 개화시간$(10:00{\sim}14:00)$의 주풍은 남풍이었으며, 시간대별 풍속은 $0.94{\sim}1.77$ m/s이었다. 2. 개화기는 LM벼와 Wild벼가 일치하는 기간은 8일이였으며, LM벼와 Wild벼의 최성기는 4일의 차이가 있다. 3. LM벼의 화분이 non-LM벼보다 유의하게 작게 조사되었다. 4. 화분채집량은 위가 노출된 슬라이드 글라스가 위가 덮인 슬라이드 글래스 보다 많았으며 LM벼가 Wild벼보다 비산량이 많았다. 5. 벼 화분의 비산은 오전 10시부터 오후 2시까지 대부분 이루어졌다. 6. 거리에 따른 화분비산량은 1 m까지는 급격히 감소하였으며 2 m이상에서는 서서히 감소하는 전형적인 지수함수를 나타냈으며, 3 m이상에서는 거의 발견되지 않았다.

Keywords

References

  1. 바이오안전성백서. 2008. 한국생명공학연구원 바이오안전성보센터, 대전. pp. 202-216
  2. 손종구, 김기일, 조성관. 2005. 유전자변형작물(국제무역마찰 및 다국적기업전략에 대한 대응방안). BA 409. 한국과학기술정보연구원
  3. 2000-2004 국내 각 연구기관의 보고서 및 연구논문집 조사 결과. 2005. 농업생명공학연구원
  4. 이은웅 등 1994. 수도작. 향문사. pp. 82-84
  5. Amand, P. C., D. Z. Skinner, and R. N. Praden. 2000. Risk of alfalfa transgene dissemination and scale-dependent effects. Theoretical and Applied Genetics 101 : 107-114 https://doi.org/10.1007/s001220051457
  6. Bao-Rong, L. and A. S. Allison. 2005. Gene flow from genetically modified rice and its environmental consequences. BioScience. 55(8) : 669-678 https://doi.org/10.1641/0006-3568(2005)055[0669:GFFGMR]2.0.CO;2
  7. Dafini, A. and D. Firmage. 2000. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant systematics and Evolution. 222 : 113-132 https://doi.org/10.1007/BF00984098
  8. Gealy, D. R., D. H. Mitten, and J. N. Rutger. 2003. Gene flow between red rice (Oriza sativa) and herbicide-resistant rice (Oriza sativa) : Implications for weed management weed. Weed Technology 17 : 627-645 https://doi.org/10.1614/WT02-100
  9. Giddings, G. D., N. R. Sackville Hamilton, and M. D. Hayward. 1997a. The release of genetically modified grasses. Part 1: pollen dispersal to traps in Lolium perenne. Theoretical and Applied Genetics 94 : 1000-1006 https://doi.org/10.1007/s001220050507
  10. Giddings, G. D., N. R. Sackville Hamilton, and M. D. Hayward. 1997b. The release of genetically modified grasses. Part 2: the influence of wind direction on pollen dispersal. Theoretical and Applied Genetics 94 : 1007-1014 https://doi.org/10.1007/s001220050508
  11. Gray, A. J. and A. F. Raybould. 1998. Crop genetics: Reducin transgene escape routes. Nature 392 : 653-654 https://doi.org/10.1038/33537
  12. Jang, I. C., S. J. Oh, J. S. Seo, W. B. Choi, S. I. Song, C. H. Kim, Y. S. Kim, H. S. Seo, Y. D. Choi, B. H. Nahm, and J. K. Kim. 2003. Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance without Stunting Growth. Plant Physiology. 131 : 516-524 https://doi.org/10.1104/pp.007237
  13. James, C. 2007. Global Status of Commercialized Biltech/GM Crops: 2007. ISAAA Brief No. 37. ISAAA: Ithaca, NY
  14. Jackson, S. T. and M. E. Lyford. 1999. Pollen dispersal models in quarternary plant ecology: assumptions, parameters and prescriptions. The Botanical Review 65(1) : 39-75 https://doi.org/10.1007/BF02856557
  15. Rong, Jun, Bao-Rong Lu, Zhiping song, Jun Su, Allison A. Snow, Xinsheng Zhang, Shuguang Sun, Rui Chen, and Feng Wang. 2007. Dranatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytologist 173 : 346-353 https://doi.org/10.1111/j.1469-8137.2006.01906.x
  16. Chen, Li Juan, Dong sun Lee, Zhiping Song, Hak Soo Suh, and Bao-Rong Lu. 2004. Gene now from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany 93 : 67-73 https://doi.org/10.1093/aob/mch006
  17. Martin, H. and E. C. James. 2007. The effect of wind direction on cross-pollination in wind-pollinated GM crops. Ecological Applications. 17(4) : 1234-1243 https://doi.org/10.1890/06-0569
  18. Messeguer, J., C. Fogher, E. Guiderdoni, V. Marra, M. M. Catala, G. Baldi, and E. Mele. 2001. Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theoretical and Applied Genetics 103 : 1151-1159 https://doi.org/10.1007/s001220100713
  19. Messeguer, J., V. Marfa, M. M. Catalo, E. Guiderdoni, and E. Mele, 2004. A field study of pollen-mediated gene now from Mediterranean GM rice to conventional rice and the rice weed. Molecular Breeding 13 : 103-112 https://doi.org/10.1023/B:MOLB.0000012285.39859.9d
  20. Odd, Arne Rognli, Nils-Otto Nilsson, and Minna Nurminiemi, 2000. Effects of distance and pollen competition on gene now in the wind-pollinated grass Festuca pratensis Huds. Hefedity 85: 550-560 https://doi.org/10.1046/j.1365-2540.2000.00789.x
  21. Paloma, Carijjanos, Carmen Galan, Purifkcacion Alcazar, and Eugenio Dominguez, 2004. Airborne pollen records response to climatic conditions in arid areas of the Iberian Peninsula. Environmental and Experimental Botany 52: 11-22 https://doi.org/10.1016/j.envexpbot.2003.11.008
  22. Philip, J. D., C. Belinda, and M. G. Eliana. Fontes. 2002. Potential for the environmental impact of transgenic crops. Nature biotechnology 20 : 567-574 https://doi.org/10.1038/nbt0602-567
  23. Snow, A. A. and P. M. Moran-Palma. 1997. Commercialization of transgenic plants: potential ecological risks. BioScience. 47 : 86-96 https://doi.org/10.2307/1313019
  24. Stewart, C. N., M. D. Halfhill, and S. J. Warwick. 2003. Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics 4 : 806-817 https://doi.org/10.1038/nrg1179
  25. Timmons, A. M., E. T. O'Brien, Y. M. Charters, S. J. Dubbels, and M. J. Wilkinson. 1995. Assessing the risks of wind pollination from field of genetically modified Brassica napus ssp. oleifera. Euphytica 85 : 417-423 https://doi.org/10.1007/BF00023975
  26. Walklate, P. J., J. C. R. Hunt, H. L. Higson, and J. B. Sweet. 2004. A model of pollen-mediated gene flow for oilseed rape. Proceedings of the Royal Society of London, Series B-Biological Sciences 271 : 441-447 https://doi.org/10.1098/rspb.2003.2578
  27. Y. Sana. 1989. The direction of pollen flow between two co-occurring rice species, Oryza sativa and O. glaberrima. Hededity 63 : 353-357 https://doi.org/10.1038/hdy.1989.109
  28. Song, Z., B. R. Lu, Y. G. Zhu, and J. K. Chen. 2003. Gene now from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytologist 157 : 657-665 https://doi.org/10.1046/j.1469-8137.2003.00699.x
  29. Song, Z., B. R. Lu, and J. Chen. 2004. Pollen flow of cultivated rice measured under experimental conditions. Biodiversity and conservation 13 : 579-590 https://doi.org/10.1023/B:BIOC.0000009491.24573.1d