DOI QR코드

DOI QR Code

Influence of Hydrogen on Al-doped ZnO Thin Films in the Process of Deposition and Annealing

  • Chen, Hao (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS) ;
  • Jin, Hu-Jie (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS) ;
  • Park, Choon-Bae (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS) ;
  • Hoang, Geun-C. (Department. of Semiconductor and Display, Wonkwang University, WRISS)
  • Published : 2009.06.25

Abstract

The Al-doped ZnO (AZO) films were deposited on a glass substrate by RF magnetron sputtering in pure Ar and $Ar+H_2$ gas ambient at temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature range from 100 to 300 $^{\circ}C$, respectively. It was found that either the addition of hydrogen to the sputtering gas or the annealing treatment effectively reduced the resistivity of the AZO films. When the AZO films were annealed at the temperature of 300 $^{\circ}C$ for lhr in a hydrogen atmosphere, the resistivity decreased from $2.60{\times}10^{-3}\;{\Omega}cm$ to $8.42{\times}l0^{-4}\;{\Omega}cm$ for the film deposited in pure Ar gas ambient. Under the same annealing conditions of temperature and hydrogen ambient, the resistivity of AZO films deposited in the $Ar+H_2$ gas mixture decreased from $8.22{\times}l0^{-4}\;{\Omega}cm$ to $4.25{\times}l0^{-4}\;{\Omega}cm$. The lowest resistivity of $4.25{\times}l0^{-4}\;{\Omega}cm$ was obtained by adding hydrogen gas to the deposition and annealing process. X-ray diffraction (XRD) pattern of all films showed preferable growth orientation of (002) plane. The average transmittance is above 85 % and in the range of 400-1000 nm for all films.

Keywords

References

  1. Joel N. Duenow, Timothy A. Gessert, David M. Wood, David L. Young, and Timothy J. Coutts, J. Non-Cryst. Solids. 354, 2787 (2008) https://doi.org/10.1016/j.jnoncrysol.2007.10.070
  2. J. S. Yoo, J. H. Lee, S. K. Kim, K. H. Yoon, I. J. Park, S. K. Dhungel, B. Karunagaran, D. Mangalaraj, and J. S. Yi, Thin Solid Films, 480-481, 213 (2005) https://doi.org/10.1016/j.tsf.2004.11.010
  3. K. Ellmer and R. Wendt, Surf. Coat. Technol. 93, 21 (1997) https://doi.org/10.1016/S0257-8972(97)00031-5
  4. Chris G. Van de Walle, Phys. Rev. Lett., 85, 5 (2000) https://doi.org/10.1103/PhysRevLett.85.1012
  5. D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, and B. K. Meyer, Phys. Rev. Lett. 88, (2002) https://doi.org/10.1103/PhysRevLett.88.045504
  6. L.-Y. Chen, W.-H. Chen, J.-J. Wang, and Franklin C.-N. Hong, Phys. Rev. Lett. 85, 5628 (2004)
  7. J. F. Chang, W. C. Lin, and M. H. Hon, Appl. Surf. Sci. 183, 18 (2001) https://doi.org/10.1016/S0169-4332(01)00541-4
  8. B.-Y. Oh, M.-C. Jeong, D.-S. Kim, W. Lee, and J.-M. Myoung, J.Cryst. Growth. 281, 475 (2005) https://doi.org/10.1016/j.jcrysgro.2005.04.045
  9. S. Y. Myong, S. I. Park, and K. S. Lim, Thin Solid Films 513, 148 (2006) https://doi.org/10.1016/j.tsf.2006.01.066
  10. S. Y. Myong and K. S. Lim, Appl. Phys. Lett. 82, (2003)
  11. W. Liu, G. Du, Y. Sun, Y. Xu, T. Yang, X. Wang, Y. Chang, and F. Qiu, Thin Solid Films 515, 3057 (2007) https://doi.org/10.1016/j.tsf.2006.08.021
  12. S. H. Lee, T. S. Lee, K. S. Lee, B. Cheong, Y. D. Kim, and W. M. Kim, J. Phys. D, 41, (2008)
  13. M. L. Addonizio, A. Antonaia, G. Cantele, and C. Privato, Thin Solid Films 349, 93 (1999) https://doi.org/10.1016/S0040-6090(99)00186-8
  14. Z. G. Wang, X. T. Zu, X. Zhu, and L. M. Wang, Physica. E, 35, 199 (2006) https://doi.org/10.1016/j.physe.2006.07.022
  15. H. J. Jin, Y. H. Jeong, and C. B. Park, Trans. Electr. Electron. Mater. 9, 67 (2008) https://doi.org/10.4313/TEEM.2008.9.2.067

Cited by

  1. Properties of Eu-doped zinc oxide thin films grown on glass substrates by radio-frequency magnetron sputtering vol.13, pp.9, 2013, https://doi.org/10.1016/j.cap.2013.08.007
  2. Growth Mechanism of Preferred Crystallite Orientation in Transparent Conducting ZnO:In Thin Films vol.98, pp.10, 2015, https://doi.org/10.1111/jace.13742
  3. Circuit Compatible Model for Electrostatic Doped Schottky Barrier CNTFET vol.45, pp.10, 2016, https://doi.org/10.1007/s11664-016-4743-7
  4. Morphological TEM studies and magnetoresistance analysis of sputtered Al-substituted ZnO films: The role of oxygen vol.212, pp.6, 2015, https://doi.org/10.1002/pssa.201431888
  5. Effects of Rapid Thermal Annealing on the Properties of AZO Thin Films Grown by Radio-frequency Magnetron Sputtering vol.18, pp.5, 2009, https://doi.org/10.5757/JKVS.2009.18.5.377
  6. Influence of hydrogen introduction on structure and properties of ZnO thin films during sputtering and post-annealing vol.519, pp.11, 2011, https://doi.org/10.1016/j.tsf.2011.01.187
  7. Structural, electrical, and optical properties of hydrogen-doped ZnO films vol.86, pp.11, 2012, https://doi.org/10.1103/PhysRevB.86.115334
  8. Influence of hydrogen plasma thermal treatment on the properties of ZnO:Al thin films prepared by dc magnetron sputtering vol.107, 2014, https://doi.org/10.1016/j.vacuum.2014.04.022
  9. Low-temperature crystal growth of aluminium-doped zinc oxide nanoparticles in a melted viscous liquid of alkylammonium nitrates for fabrication of their transparent crystal films vol.16, pp.46, 2014, https://doi.org/10.1039/C4CE01336K
  10. Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing vol.27, pp.1, 2016, https://doi.org/10.1007/s10854-015-3804-7
  11. Gap States of ZnO Thin Films by New Methods: Optical Spectroscopy, Optical Conductivity and Optical Dispersion Energy vol.35, pp.2, 2018, https://doi.org/10.1088/0256-307X/35/2/027701
  12. The Optical Properties of Aluminum-Doped Zinc Oxide Thin Films (AZO): New Methods for Estimating Gap States pp.1557-1947, 2018, https://doi.org/10.1007/s10948-018-4828-z
  13. Influence of surface topography and annealing temperature on the surface and volume of dissipation electrical energy and Spitzer–Fan model in Al doped ZnO films vol.50, pp.8, 2018, https://doi.org/10.1007/s11082-018-1587-9