DOI QR코드

DOI QR Code

Transparent Phosphorus Doped ZnO Ohmic Contact to GaN Based LED

  • Lim, Jae-Hong (Department of Chemical & Environmental Engineering, University of California) ;
  • Park, Seong-Ju (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
  • Published : 2009.08.27

Abstract

This study develops a highly transparent ohmic contact using phosphorus doped ZnO with current spreading for p-GaN to increase the optical output power of nitride-based light-emitting diodes (LEDs). The phosphorus doped ZnO transparent ohmic contact layer was prepared by radio frequency magnetron sputtering with post-deposition annealing. The transmittance of the phosphorus doped ZnO exceeds 90% in the region of 440 nm to 500 nm. The specific contact resistance of the phosphorus doped ZnO on p-GaN was determined to be $7.82{\times}10^{-3}{\Omega}{\cdot}cm^2$ after annealing at $700^{\circ}C$. GaN LED chips with dimensions of $300\times300{\mu}m$ fabricated with the phosphorus doped ZnO transparent ohmic contact were developed and produced a 2.7 V increase in forward voltage under a nominal forward current of 20 mA compared to GaN LED with Ni/Au Ohmic contact. However, the output power increased by 25% at the injection current of 20 mA compared to GaN LED with the Ni/Au contact scheme.

Keywords

References

  1. S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, J. Appl. Phys, Lett., 86(1), 1 (1999)
  2. O. Ambacher, J. Phys. D, 31(20), 2653 (1998) https://doi.org/10.1088/0022-3727/31/20/001
  3. S. Nakamura, G. Fasol, The Blue Laser Diode, Springer, Berlin, (1997)
  4. J. -K. Ho, C. -S. Jong, C. C. Chiu, C. -N. Huang, C. -Y. Chen, and K. -K. Shih, Appl. Phys. Lett., 74(9), 1275 (1999) https://doi.org/10.1063/1.123546
  5. L. -C. Chen, J. -K. Ho, C. -S. Jong, C. C. Chiu, K.-K. Shih, F. -R. Chen, J. -J. Kai and L. Chang, Appl. Phys. Lett., 76(25), 3703 (2000) https://doi.org/10.1063/1.126755
  6. R. -H. Horng, D. -S. Wuu, Y. -C. Lien, and W. -H. Lan, Appl. Phys. Lett., 79(18), 2925 (2001) https://doi.org/10.1063/1.1415048
  7. K. -K. Kim, H. -S. Kim, D. -K. Hwang, J. -H. Lim and S. -J. Park, Appl. Phys. Lett., 83(1), 63 (2003) https://doi.org/10.1063/1.1591064
  8. J. -H. Lim, C. -K. Kang, K. -K. Kim, I. -K. Park, D. -K. Hwang, and S. -J. Park, Advanced Materials, 18(20), 2720 (2006) https://doi.org/10.1002/adma.200502633
  9. D.-J. Kim, Y. -T. Moon, K. -M. Song, and S. J. Park, Jpn. J. Appl. Phys. Part 1, 40(5A), 3085 (2001) https://doi.org/10.1143/JJAP.40.3085
  10. V. Srikant and D. R. Clarke, J. Appl. Phys., 83(10), 5447 (1998) https://doi.org/10.1063/1.367375
  11. B. V. Crist, Handbook of Monochromatic XPS Spectrometer, Willy, New York, (2000)
  12. J. -H. Lim, D. K. Hwang, H. S. Kim, J. H. Yang, R. Navamathavan, and S.-J. Park, J. Electrochem. Soc., 152(6), G491 (2005) https://doi.org/10.1149/1.1914758