DOI QR코드

DOI QR Code

Broadband Wavelength-swept Raman Laser for Fourier-domain Mode Locked Swept-source OCT

  • Lee, Hyung-Seok (Department of Cogno Mechatronics Engineering, Pusan National University) ;
  • Jung, Eun-Joo (Department of Cogno Mechatronics Engineering, Pusan National University) ;
  • Jeong, Myung-Yung (Department of Cogno Mechatronics Engineering, Pusan National University) ;
  • Kim, Chang-Seok (Department of Cogno Mechatronics Engineering, Pusan National University)
  • Received : 2009.06.08
  • Accepted : 2009.09.01
  • Published : 2009.09.25

Abstract

A novel broadband wavelength-swept Raman laser was used to implement Fourier-domain mode locked (FDML) swept-source optical coherence tomography (SS-OCT). Instead of a conventional semiconductor optical amplifier, this study used broadband optical fiber Raman amplification, over 50 nm centered around 1545 nm, using a multi-wavelength optical pumping scheme, which was implemented with the four laser diodes at the center wavelengths of 1425, 1435, 1455 and 1465 nm, respectively, and the maximum operating power of 150 mW each. The operating swept frequency of the laser was determined to 16.7 kHz from the FDML condition of 12 km optical fiber in the ring cavity. The OCT images were obtained using the novel broadband wavelengthswept Raman laser source.

Keywords

References

  1. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma,'High- peed optical frequency-domain imaging,' Opt. Exp. 11, 2953-2963 (2003) https://doi.org/10.1364/OE.11.002953
  2. R. Huber, M. Wojtkowski, and J. G. Fujimoto, 'Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,' Opt. Exp. 14, 3225-3237 (2006) https://doi.org/10.1364/OE.14.003225
  3. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, 'Highspeed and wide bandwidth Fourier domain mode-locking wavelength swept laser with multiple SOAs,' Opt. Exp. 16, 2547-2554 (2008) https://doi.org/10.1364/OE.16.002547
  4. E. J. Jeong, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, 'Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,' Opt. Exp. 16, 16552-16560 (2008) https://doi.org/10.1364/OE.16.016552
  5. J. I. Youn, 'Evaluation of morphological changes in degenerative cartilage using 3-D optical coherence tomography,' J. Opt. Soc. Korea 12, 98-102 (2008) https://doi.org/10.3807/JOSK.2008.12.2.98
  6. E. J. Jung, H. S. Lee, J. S. Park, M. Y. Jeong, and C. S. Kim, 'Novel wavelength-swept Raman laser for arbitrary gain band OCT,' Proc. SPIE 7168, 716823 (2009) https://doi.org/10.1117/12.808877
  7. T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, 'Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,' Opt. Lett. 33, 2815-2817 (2008) https://doi.org/10.1364/OL.33.002815
  8. C. S. Kim and J. U. Kang, 'Multiplewavelength switching of Raman fiber ring laser incorporating composite polarization-maintaining fiber Lyot-sagnac filter,' Appl. Opt. 43, 3151-3157 (2004) https://doi.org/10.1364/AO.43.003151
  9. S. Namiki and Y. Emori, 'Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-divisionmultiplexed high-power laser diodes,' IEEE J. Select. Topics Quantum Electron. 7, 3-16 (2001) https://doi.org/10.1109/2944.924003
  10. K. Liu and E. Garmire, 'Understanding the formation of the SRS stokes spectrum in fused silica fiber,' IEEE J. Quantum Electron. 27, 1022-1030 (1991) https://doi.org/10.1109/3.83337
  11. H. S. Seo, K. Oh, and U. C. Paek, 'Gain optimization of germanosilicate fiber Raman amplifier and its applications in the compensation of Raman-induced crosstalk among wavelength division multiplexing channels,' IEEE J. Quantum Electron. 37, 1110-1116 (2001) https://doi.org/10.1109/3.945315
  12. W. P. Urquhart and P. J. R. Laybourn, 'Stimulated Raman scattering in optical fibers with nonconstant losses: a multi wavelength model,' Appl. Opt. 25, 2592– 2599 (1986) https://doi.org/10.1364/AO.25.002592
  13. W. C. Kim and D. W. Park, 'Analysis of temperature effects on Raman silicon photonic devices,' J. Opt. Soc. Korea 12, 288-297 (2008) https://doi.org/10.3807/JOSK.2008.12.4.288
  14. D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, 'Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,' Appl. Opt. 34, 1278-1285 (1995) https://doi.org/10.1364/AO.34.001278

Cited by

  1. The numerical study of pumping configurations on the lasing efficiency in photonic crystal fiber Raman laser vol.124, pp.6, 2013, https://doi.org/10.1016/j.ijleo.2011.12.039
  2. Optical Coherence Tomography Based on a Continuous-wave Supercontinuum Seeded by Erbium-doped Fiber's Amplified Spontaneous Emission vol.14, pp.1, 2010, https://doi.org/10.3807/JOSK.2010.14.1.049
  3. Wavelength-Swept Cascaded Raman Fiber Laser around 1300 nm for OCT Imaging vol.19, pp.2, 2015, https://doi.org/10.3807/JOSK.2015.19.2.154
  4. Wideband Raman-Pumped Wavelength-Swept Laser for Optical Coherence Tomography Application vol.6, pp.6, 2013, https://doi.org/10.7567/APEX.6.062701