DOI QR코드

DOI QR Code

Current-Driven Domain-Wall Depinning in Pt/CoFe/Pt Nanowires with Perpendicular Magnetic Anisotropy

  • Kim, Kab-Jin (Department of Physics, Seoul National University) ;
  • Lee, Jae-Chul (Department of Physics, Seoul National University) ;
  • Choe, Sug-Bong (Department of Physics, Seoul National University)
  • Published : 2009.09.30

Abstract

The spin transfer torque efficiency was determined experimentally by observing the current-driven domainwall depinning of Pt/CoFe/Pt nanowires with perpendicular magnetic anisotropy. The depinning time was exponentially proportional to the applied magnetic field, and was well explained by the Neel-Brown formula. The depinning time and threshold magnetic field were varied considerably by injecting current into the nanowire. The spin transfer torque efficiency was estimated to be $(7.2{\pm}0.9){\times}10^{-15}Tm^2$/A from the linear dependence of the threshold current density with respect to the applied magnetic field.

Keywords

References

  1. L. Berger, J. Appl. Phys. 55, 1954 (1984) https://doi.org/10.1063/1.333530
  2. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 1688 (2005) https://doi.org/10.1126/science.1108813
  3. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008) https://doi.org/10.1126/science.1145799
  4. M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. P. Parkin, Science 320, 209 (2008) https://doi.org/10.1126/science.1154587
  5. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y. B. Bazaliy, and S. S. P. Parkin, Phys. Rev. Lett. 98, 037204 (2007) https://doi.org/10.1103/PhysRevLett.98.037204
  6. G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004) https://doi.org/10.1103/PhysRevLett.92.086601
  7. M. Kläui, P.-O. Jubert, R. Allenspach, A. Bischof, J. A. C. Bland, G. Faini, U. Rüdiger, C. A. F. Vaz, L. Vila, and C. Vouille, Phys. Rev. Lett. 95, 026601 (2005) https://doi.org/10.1103/PhysRevLett.95.026601
  8. S.-B. Choe, Appl. Phys. Lett. 92, 062506 (2008) https://doi.org/10.1063/1.2857542
  9. D. Ravelosona, D. Lacour, J. A. Katine, B. D. Terris, and C. Chappert, Phys. Rev. Lett. 95, 117203 (2005) https://doi.org/10.1103/PhysRevLett.95.117203
  10. M. Feigenson, J. W. Reiner, and L. Klein, Phys. Rev. Lett. 98, 247204 (2007) https://doi.org/10.1103/PhysRevLett.98.247204
  11. O. Boulle, J. Kimling, P. Warnicke, M. Kläui, U. Rüdiger, G. Malinowski, H. J. M. Swagten, B. Koopmans, C. Ulysse, and G. Faini, Phys. Rev. Lett. 101, 216601 (2008) https://doi.org/10.1103/PhysRevLett.101.216601
  12. S.-W. Jung, W. Kim, T.-D. Lee, K.-J. Lee, and H.-W. Lee, Appl. Phys. Lett. 92, 202508 (2008) https://doi.org/10.1063/1.2926664
  13. S.-W. Jung and H.-W. Lee, J. Magnetics 12, 1 (2007) https://doi.org/10.4283/JMAG.2007.12.1.001
  14. H. Tanigawa, K. Kondou, T. Koyama, K. Nakano, S. Kasai, N. Ohshima, S. Fukami, N. Ishiwata, and T. Ono, Appl. Phys. Express 1, 011301 (2008) https://doi.org/10.1143/APEX.1.011301
  15. T. Koyama, G. Yamada, H. Tanigawa, S. Kasai, N. Ohshima, S. Fukami, N. Ishiwata, Y. Nakatani, and T. Ono, Appl. Phys. Express 1, 101303 (2008) https://doi.org/10.1143/APEX.1.101303
  16. T. A. Moore, I. M. Miron, G. Gaudin, G. Serret, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and M. Bonfim, Appl. Phys. Lett. 93, 262504 (2008) https://doi.org/10.1063/1.3062855
  17. K.-J. Kim, J.-C. Lee, S.-M. Ahn, K.-S. Lee, C.-W. Lee, Y. J. Cho, S. Seo, K.-H. Shin, S.-B. Choe, and H.-W. Lee, Nature 458, 740 (2009) https://doi.org/10.1038/nature07874
  18. S.-B. Choe, D.-H. Kim, K.-S. Ryu, H.-S. Lee, S.-C. Shin, J. Appl. Phys. 99, 103902 (2006) https://doi.org/10.1063/1.2199978
  19. K.-J. Kim and S.-B. Choe, J. Magn. Magn. Mater. 321, 2197 (2009) https://doi.org/10.1016/j.jmmm.2009.01.031
  20. M. Laufenberg, W. Bührer, D. Bedau, P.-E. Melchy, M. Kläui, L. Vila, G. Faini, C. A. F. Vaz, J. A. C. Bland, and U. Rüdiger, Phys. Rev. Lett. 97, 046602 (2006) https://doi.org/10.1103/PhysRevLett.97.046602