DOI QR코드

DOI QR Code

Screening of Antiviral Activity from Natural Plants against Feline Calicivirus

Feline calicivirus에서 항바이러스 활성을 가지는 천연식물자원 탐색

  • Kim, Kyoung-Lan (Department of Microbiology, Pukyong National University) ;
  • Kim, Young-Mog (Department of Food Science & Technology, Pukyong National University) ;
  • Lee, Eun-Woo (Department of Life Science and Biotechnology, Dongeui University) ;
  • Lee, Dae-Sung (Department of Microbiology, Pukyong National University) ;
  • Lee, Myung-Suk (Department of Microbiology, Pukyong National University)
  • Published : 2009.07.30

Abstract

In an effort to discover an antiviral substance against noroviruse (NV), which causes gastroenteritis illness world-wide, several plants including spices and herbs were evaluated for their antiviral activities against feline calicivirus (FCV) as a surrogate for NV. Among them, methanolic extract of green tea (Camellia sinensis L.) exhibited significant antiviral activity against FCV. After treatment with green tea extract (3.13 mg/ml) for 1 hr, FCV was completely inactivated. The antiviral activity of green tea extract against FCV was also determined to be dose and time- dependent. The results obtained in this study suggested that green tea will be effective in the prevention of food-borne diseases caused by NV.

노로바이러스는 인간에게 급성위장염을 일으키는 식중독 바이러스로, 최근 전세계적으로 노로바이러스 식중독 사고가 증가하고 있다. 따라서 본 연구에서는 다양한 생리활성 작용이 있다고 알려진 향신료, 차(茶), 식물성 한약재등 11종의 천연물질을 대상으로 노로바이러스의 대체모델인 feline calicivirus (FCV 에 대한 항바이러스 활성을 조사하였다. 각 추출물에 대한 항바이러스 활성은 end point dilution assay 방법인 50% tissue culture infectious dose ($TCID_{50}$)으로 바이러스 감염가를 측정하였다. 녹차(Camellia sinensis L.) 추출물의 경우 3.13 mg/ml의 농도에서 1 시간만에 FCV가 완전히 불활성화 되었으며, 홍화씨 (Carthamus tinctorius L.) 추출물은 6.25 mg/ml의 농도에서 5시간 만에 바이러스가 불활성화 되어 녹차추출물이 FCV에 대한 항바이러스 활성이 가장 뛰어난 것으로 조사되었으며, 농도 및 반응시간에 유의적으로 항바이러스 활성을 나타내는 것으로 관찰되었다. 녹차 및 홍화씨 추출물 등과 같은 천연식물 자원을 이용하여 FCV에 대한 항바이러스 활성을 조사한 결과는 궁극적으로는 노로바이러스에 의한 식중독 저감을 위한 기초자료에 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Blackburn, B. G., G. F. Craun, J. S. Yoder, V. Hill, R. L. Calderon, N. Chen, S. H. Lee, D. A. Levy, and M. J. Beach. 2004. Surveillance for waterborne-disease outbreaks associated with drinking water-United States. 2001-2002. MMWR Surveillance Summaries 53, 23-45
  2. Bidawid, S., N. Malik, O. Adegbunrin, S. A. Sattar, and J. M. Farber. 2003. A feline kidney cell line-based plaque assay for feline calicivirus, a surrogate for Norwalk virus. J. Virol. Methods 107, 163-167 https://doi.org/10.1016/S0166-0934(02)00214-8
  3. Bellamy, K., 1995. A review of the test methods used to establish virucidal activity. J. Hosp. Infect 30, 389-396 https://doi.org/10.1016/0195-6701(95)90043-8
  4. Bull, R. A., E. T. V. Tu, C. J. McIver, W. D. Rawlinson, and P. A. White. 2006. Emergence of a new norovirus genotype II. 4 variant associated with global outbreaks of gastroenteritis. J. Clin. Microbiol. 44, 327-333 https://doi.org/10.1128/JCM.44.2.327-333.2006
  5. Chung, D. O., I.D. Park, and H. O. Jung. 2001. Evaluation of functional properties of onion, rosemary, and thyme extracts in Onion Kimchi. Kor. J. Soc. Food Cookery Sci. 17, 24-29
  6. Duizer, E., K. J. Schwab, F. H. Neill, R. L. Atmar, M. P. G. Koopman, and M. K. Estes. 2004a. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 85, 79-87 https://doi.org/10.1099/vir.0.19478-0
  7. Duizer, E., P. Bijkerk, B. Rockx, A. Groot, F. Twisk, and M. Koopmans. 2004b. Inactivation of Caliciviruses. Appl. Environ. Microbiol. 70, 4538-4543 https://doi.org/10.1128/AEM.70.8.4538-4543.2004
  8. Doultree, J. C., J. D. Druce, C. J. Birch, D. S. Bowden, and J. A. Marshall. 1999. Inactivation of feline calicivirus, a Norwalk virus surrogate. J. Hosp. Infect 41, 51-57 https://doi.org/10.1016/S0195-6701(99)90037-3
  9. Gehrke, C., J. Steinmann, and P. Goroncy-Bermes. 2004. Inactivation of feline calicivirus, a surrogate of norovirus (formerly Norwalk-like viruses), by different types of alcohol in vitro and in vivo. J. Hosp. Infect 56, 49-55
  10. Hierholzer, J. C. and R. A. Killington. 1996. Virus isolation and quantitation. In: Virology Methods Manual, In Mahy, B. W. J, and H. O. Kangro (eds.), Academy Press, San Diego, 35-37
  11. Jee, Y. M. 2006. Norovirus food poisoning and laboratory surveillance for viral gastroenteritis in Korea. Korea Institute for Health and Social Affairs 118, 26-34
  12. Jimenez, L. and M. Chiang. 2006. Virucidal activity of a quaternary ammonium compound disinfectant against feline calicivirus: A surrogate for norovirus. Am. J. Infect Controd. 34, 269-273 https://doi.org/10.1016/j.ajic.2005.11.009
  13. Kim, M. L., K. H. Choi, and C. S. Park. 2000. Growth inhibition of food-borne bacteria by juice and extract of ginger and garlic. J. East Asian Soc. Dietary Life 10, 160-169
  14. Kott, V., L. Barbini, M. Cruanes, J. de D. Munoz, E. Vivot, J. Cruanes, V. Martino, G. Ferraro, L. Cavallaro, and R. Campos. 1998. Antiviral activity in Argentine medicinal plants. J. Ethnopharmacol 64, 79-84 https://doi.org/10.1016/S0378-8741(98)00098-1
  15. Lee, N. R. 2007. Norovirus and foodborne disease. J. Food Hyg. Saf. 2, 20-29
  16. Lopman, B., H. Vennema, E. Kohli, P. Pothier, A. Sanchez, A. Negredo, J. Buesa, E. Schreier, M. Reacher, D. Brown, J. Gray, M. Iturriza, C. Gallimore, B. Bottiger, K. O. Hedlund, M. Torven, C. H. von Bonsdorff, L. Maunula, M. Poljsak-Prijatelj, J. Zimsek, G. Reuter, G. Szucs, B. Melegh, L. Svennson, Y. van Duijnhoven, and M. Koopmans. 2004. Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 363, 682-688 https://doi.org/10.1016/S0140-6736(04)15641-9
  17. Malik, Y. S., S. Maherchandani, and S. M. Goyal. 2006. Comparative efficacy of ethanol and isopropanol against feline calicivirus, a norovirus surrogate. Am. J. Infect Contro. 34, 31-35 https://doi.org/10.1016/j.ajic.2005.05.012
  18. Park, C. S. 2000. Effect of pine needle and green tea extracts on the survival of pathogenic bacteria. J. Food Sci. Nutr. 16, 40-46
  19. Park, K. J. and H. H. Lee. 2005. In vitro antiviral activity of aqueous extracts from korean medicinal plants against influenza virus type A. J. Microbiol. Biotechnol. 15, 924-929
  20. Rym, K. H., S. K. Eo, Y. S. Kim, C. K. Lee, and S. S. Han. 1999. Antiviral activity of water soluble substance from Elfvingia applanata. Kor. J. Pharmacogn. 30, 25-33
  21. Steinmann, J. 2004. Surrogate viruses for testing virucidal efficacy of chemical disinfectants. J. Hosp. Infect 56, 49-54 https://doi.org/10.1111/j.1472-765X.2010.02871.x
  22. Widdowson, M. A., A. Sulka, S. N. Bulens, S. R. Beard, and S. S. Chaves. 2005. Norovirus and foodborne disease, United States. 1991-2000. Emerging Infect Dis. 11, 95-102 https://doi.org/10.3201/eid1101.040426

Cited by

  1. Quantitative Analysis of Feline Calicivirus Inactivation using Real-time RT-PCR vol.29, pp.1, 2014, https://doi.org/10.13103/JFHS.2014.29.1.031
  2. Phaeophyta Extracts Exhibit Antiviral Activity against Feline Calicivirus vol.17, pp.1, 2014, https://doi.org/10.5657/FAS.2014.0155
  3. Inactivation of feline calicivirus and murine norovirus during Dongchimi fermentation vol.31, pp.2, 2012, https://doi.org/10.1016/j.fm.2012.04.002