Inhibitory Effect of Glycoprotein Isolated from Cudrania tricuspidata Bureau on Histamine Release and COX-2 Activity in RBL-2H3 Cells

RBL-2H3 세포에 있어서 꾸지뽕 당단백질에 의한 히스타민 방출 및 COX-2 활성 억제 효과

  • Oh, Phil-Sun (Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University) ;
  • Lee, Hye-Jin (Department of Animal Science, Chonnam National University) ;
  • Lim, Kye-Taek (Molecular Biochemistry Laboratory, Biotechnology Research Institute, Chonnam National University)
  • 오필선 (전남대학교 생물공학연구소 분자생화학 교실 및 동물유해인자 제어를 위한 전문인력 양성 사업팀(BK21)) ;
  • 이혜진 (전남대학교 동물자원학부) ;
  • 임계택 (전남대학교 생물공학연구소 분자생화학교실)
  • Published : 2009.08.31

Abstract

The purpose of this study was to determine the inhibitory effect of a glycoprotein isolated from Cudrania tricuspidata Bureau (CTB glycoprotein, 75 kDa) on immunoglobulin E (IgE)-induced allergic inflammation in RBL-2H3 cells. This experiment evaluated the production of intracellular reactive oxygen species (ROS), the activities of mitogenactivated protein kinase (MAPK), transcription factor (c-jun), and cyclooxygenase (COX)-2, and histamine release in cells. The results showed that the CTB glycoprotein inhibited histamine release and COX-2 expression induced by IgE in the cells. The CTB glycoprotein also had suppressive effects on the expressions of ERK1/2, p38 MAPK, c-jun, and the production of intracellular ROS in IgE-treated RBL-2H3 cells. The activities of c-jun and COX-2 were collectively blocked by ERK1/2 inhibitor (PD98059) and p38 MAPK inhibitor (SKF86002), respectively. Hence, we speculate that CTB glycoprotein might be a component with potential use in the preparation of health supplements for the prevention of allergic diseases.

본 연구는 꾸지뽕 나무 열매로부터 75 kDa의 당단백질(꾸지뽕 당단백질)을 추출한 후 꾸지뽕 당단백질의 첨가에 따른 알레르기성 염증 인자인 histamine 유리 억제능력 및 COX-2의 활성 억제 효과를 평가하였다. RBL-2H3세포를 22시간 동안 IgE로 감작시킨 후, HSA를 처리하여 histamine의 유리양을 측정한 결과 꾸지뽕 당단백질을 처리한 농도가 증가함에 따라 histamine의 유리와 COX-2의 활성 억제율은 증가하였다. 또한 꾸지뽕 당단백질의 처리는 HSA에 의해 유도된 세포내 ROS 생성량을 농도에 의존적으로 억제하였다. 한편 꾸지뽕 당단백질을 농도별로 처리하여 세포내 단백질을 추출하여 western blot을 실시한 결과 100 ${\mu}g$/mL 농도의 꾸지뽕 당단백질을 처리한 그룹에서 ERK1/2, AP-1과 COX-2의 활성 수준은 현저히 억제 되었다(p<0.05). 따라서 이러 한 결과에 미루어볼 때, 꾸지뽕 당단백질은 세포내 해독효소의 활성을 증가시킴으로써 ROS 수준을 감소시켰으므로 꾸지뽕 당단백질의 역할이 다른 천연물 유래의 당단백질과 마찬가지로 특이적인 항산화 능력을 지니고 있음을 나타내며 histamine의 유리 억제와 COX-2의 활성이 억제되었을 것으로 생각된다. 이는 꾸지뽕 당단백질이 항 알레르기 효능을 갖는 물질로써 알레르기성 비염, 아토피 등과 같은 알레르기 관련 질환의 예방 및 치료제로 사용될 수 있을 것 사료된다.

Keywords

References

  1. Metcalfe DD, Kaliner M, Donlon MA. The mast cell. Crit. Rev. Immunol. 3: 23-74 (1981)
  2. Ahn K. Role of mast cells in allergic inflammation and innate immunity. Korean J. Pediatr. 47: 1137-1141 (2004)
  3. Marshall JS. Mast cell responses to pathogens. Nat. Rev. Immunol. 4: 787-799 (2004) https://doi.org/10.1038/nri1460
  4. Nadler MJ, Matthews SA, Turner H, Kinet JP. Signal transduction by the high-affinity immunoglobulin E receptor Fc$\varepsilon$RI: Coupling form to function. Adv. Immunol. 76: 325-355 (2000) https://doi.org/10.1016/S0065-2776(01)76022-1
  5. Mekori YA, Metcalfe DD. Mast cells in innate immunity. Immunol. Rev. 173: 131-140 (2000) https://doi.org/10.1034/j.1600-065X.2000.917305.x
  6. Petersen LJ, Mosbech H, Skov PS. Allergen-induced histamine release in intact human skin in vivo assessed by skin microdialysis technique: Characterization of factors influencing histamine releasability. J. Allergy Clin. Immun. 97: 672-679 (1996) https://doi.org/10.1016/S0091-6749(96)70313-5
  7. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. P. Natl. Acad. Sci. USA 96: 7563-7568 (1999) https://doi.org/10.1073/pnas.96.13.7563
  8. Moon TC, Murakami M, Ashraf MD, Kudo I, Chang HW. Regulation of cyclooxygenase-2 and endogenous cytokine expression by bacterial lipopolysaccharide that acts in synergy with c-kit ligand and Fc epsilon receptor I crosslinking in cultured mast cells. Cell. Immunol. 185: 146-152 (1998) https://doi.org/10.1006/cimm.1998.1284
  9. Waldeck B. Beta-adrenoceptor agonists and asthma--100 years of development. Eur. J. Pharmacol. 445: 1-12 (2002) https://doi.org/10.1016/S0014-2999(02)01728-4
  10. Assanasen P, Naclerio RM. Antiallergic anti-inflammatory effects of H1-antihistamines in humans. Cl. Aller. Im. 17: 101-139 (2002)
  11. Chen S, Gong J, Liu F, Mohammed U. Naturally occurring polyphenolic antioxidants modulate IgE-mediated mast cell activation. Immunology 100: 471-480 (2000) https://doi.org/10.1046/j.1365-2567.2000.00045.x
  12. Moreira MR, Kanashiro A, Kabeya LM, Polizello AC, Azzolini AE, Curti C, Oliveira CA, T-do Amaral A, Lucisano-Valim YM. Neutrophil effector functions triggered by Fc-gamma and/or complement receptors are dependent on B-ring hydroxylation pattern and physicochemical properties of flavonols. Life Sci. 81: 317-326 (2007) https://doi.org/10.1016/j.lfs.2007.05.016
  13. Lee JY, Lee YD, Bahn JW, Park HS. A case of occupational asthma and rhinitis caused by Sanyak and Korean ginseng dusts. Allergy 61: 392-393 (2006) https://doi.org/10.1111/j.1398-9995.2006.01032.x
  14. Ooi VE. Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 7: 715-729 (2000) https://doi.org/10.2174/0929867003374705
  15. Oh PS, Lim KT. HeLa cells treated with phytoglycoprotein (150 kDa) were killed by activation of caspase 3 via inhibitory activities of NF-kappaB and AP-1. J. Biomed. Sci. 14: 223-232 (2007) https://doi.org/10.1007/s11373-006-9140-4
  16. Lee SJ, Lim KT. 150 kDa Glycoprotein isolated from Solanum nigrum Linne stimulates caspase-3 activation and reduces inducible nitric oxide production in HCT-116 cells. Toxicol. In Vitro 20: 1088-1097 (2006) https://doi.org/10.1016/j.tiv.2006.01.019
  17. Oh PS, Lee SJ, Lim KT. Glycoprotein (116 kD) isolated from Ulmus davidiana Nakai protects from injury of 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated BNL CL.2 cells. Pharmacol. Rep. 58: 67-74 (2006)
  18. Lee SJ, Lim KT. Inhibitory effect of 30-kDa phytoglycoprotein on expression of TNF-alpha and COX-2 via activation of PKCalpha and ERK 1/2 in LPS-stimulated RAW 264.7 cells. Mol. Cell. Biochem. 317: 151-159 (2008) https://doi.org/10.1007/s11010-008-9843-0
  19. Oh PS, Lim KT. Protective activity of 30 kDa phytoglycoprotein from glucose/glucose oxidase-induced cell death in primary cultured mouse thymocytes. Environ. Toxicol. Phar. 25: 114-120 (2008) https://doi.org/10.1016/j.etap.2007.10.001
  20. Lee CB. Dehan Shikmul Dogam (A pictorial book of the Korean flora). Hyang Moon Co., Seoul, Korea. p.285 (1985)
  21. Jang IM. In Treatise on Asian Herbal Medicines. Natural Products Science National University Press, Seoul, Korea. P.7 (2003)
  22. Chang CH, Lin CC, Hattori M, Namba T. Effects of anti-lipid peroxidation of Cudrania cochinchinensis var. gerontogea. J. Ethnopharomacol. 44: 179-185 (1994)
  23. An RB, Sohn DH, Kim YC. Hepatoprotective compounds of the roots of Cudrania tricuspidata on tacrine-induced cytotoxicity in Hep G2 cells. Biol. Pharm. Bull. 29: 838-840 (2006) https://doi.org/10.1248/bpb.29.838
  24. Joo HY, Lim KT. Glycoprotein isolated from Cudrania tricuspidata Bureau inhibits iNO and COX-2 expression through modulation of NF-κB in LPS-stimulated RAW264.7 cells. Environ. Toxicol. Phar. 27: 247-252 (2009) https://doi.org/10.1016/j.etap.2008.10.014
  25. Neville Jr DM, Glossmann H. Molecular weight determination of membrane protein and glycoprotein subunits by discontinuous gel electrophoresis in dodecyl sulfate. Method Enzymol. 32: 92-102 (1974) https://doi.org/10.1016/0076-6879(74)32012-5
  26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  27. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Bio. Med. 27: 612-616 (1999) https://doi.org/10.1016/S0891-5849(99)00107-0
  28. Lowry OH, Rosebrough NT, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  29. Shore PA, Burkhalter A, Cohn VH. A method for the fluorometric assay of histamine in tissues. J. Pharmacol. Exp. Ther. 127: 182-186 (1959)
  30. Wolfreys K, Oliviera D. Alterations in intracellular reactive oxygen species generation and redox potential modulate mast cell function. Eur. J. Immunol. 27: 297-306 (1997) https://doi.org/10.1002/eji.1830270143
  31. Gushchin I, Petyaev I, Tsinkalovsky O. Kinetics of oxygen metabolism indices in the course of histamine secretion from rat mast cells. Agents Actions 30: 85-88 (1990) https://doi.org/10.1007/BF01969005
  32. Cobb MH, Goldsmith EJ. Dimerization in MAP-kinase signaling. Trends Biochem. Sci. 25: 7-9 (2000) https://doi.org/10.1016/S0968-0004(99)01508-X
  33. Kim SJ, Jeong HJ, Moon PD, Myung NY, Kim MC, Kang TH, Lee KM, Park RK, So HS, Kim EC, An NH, Um JY, Kim HM, Hong SH. The COX-2 inhibitor SC-236 exerts anti-inflammatory effects by suppressing phosphorylation of ERK in a murine model. Life Sci. 81: 863-872 (2007) https://doi.org/10.1016/j.lfs.2007.06.027
  34. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4: 131-136 (2002) https://doi.org/10.1038/ncb0502-e131
  35. Lee YN, Tuckerman J, Nechushtan H, Schutz G, Razin E, Angel P. c-Fos as a regulator of degranulation and cytokine production in FcepsilonRI-activated mast cells. J. Immunol. 173: 2571-2577 (2004)