DOI QR코드

DOI QR Code

The Synthesis and Pore Property of Hydrogen Membranes Derived from Polysilazane as Inorganic Polymer

무기 고분자인 폴리실라잔을 이용한 수소 분리막의 합성 및 기공특성

  • Kwon, Il-Min (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Song, In-Hyuck (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Park, Young-Jo (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Lee, Jae-Wook (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Yun, Hui-Suk (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Kim, Hai-Doo (Engineering Ceramics Group, Korea Institute of Materials Science)
  • 권일민 (재료연구소 엔지니어링세라믹연구그룹) ;
  • 송인혁 (재료연구소 엔지니어링세라믹연구그룹) ;
  • 박영조 (재료연구소 엔지니어링세라믹연구그룹) ;
  • 이재욱 (재료연구소 엔지니어링세라믹연구그룹) ;
  • 윤희숙 (재료연구소 엔지니어링세라믹연구그룹) ;
  • 김해두 (재료연구소 엔지니어링세라믹연구그룹)
  • Published : 2009.09.30

Abstract

We investigated the pore properties of inorganic membranes applied for hydrogen separation industry. Inorganic membranes were derived from polysilazanes. The thermal reactions involved were studied using thermogravimetry(TG) and IR spectroscopy(FTIR) of the solids. To determine the thermal effect of pore properties, polysilazanes were pyrolysed in inert atmosphere. Pore volume and BET surface area showed the maximum value at a pyrolysis temperature of $500^{\circ}C$. For amorphous SiCN membrane derived from polysilazanes, selectivity of $H_2/N_2$ was 4.81 at $600^{\circ}C$.

Keywords

References

  1. S.-H. Hyun, “Present Status and Preparation Technology of Ceramic Membranes,” Membrane J., 3 [1] 1-11 (1993)
  2. H. Y. Ha, S. W. Nam, and S.-A. Hong, “Fabrication and Application of Inorganic Membranes,” Membrane J., 9 [2] 62-8 (1999)
  3. H. Takaba, K. Mizukami, M. Kubo, A. fahmi, and A. Miyamoto, “Permeation Dynamics of Small Molecules Silica Membranes: Molecular Dynamics Through Study,” AIChE Journal, 44 [6] 1335-43 (1998) https://doi.org/10.1002/aic.690440611
  4. Anil K. Prabhu and S. Ted Oyama, “Highly Hydrogen Selective Ceramic Membranes: Application to the Transformation of Greenhouse Gases,” J. Membrane Sci., 176 233-38 (2000) https://doi.org/10.1016/S0376-7388(00)00448-8
  5. G. Xomeritakis, S. Naik, C.M. Braunbarth, and C.J. Cornelius, “Organic-templated Silica Membranes I. Gas and Vapor Transport Properties,” J. Membrane Sci., 215 225-33 (2004) https://doi.org/10.1016/S0376-7388(02)00616-6
  6. T. M. Nenoff, R. J. Spontak, and C. M. Aberg, “Membranes for Hydrogen Purification: An Important Step Toward a Hydrogen-Based Economy,” MRS bull., 31 735-44 (2006) https://doi.org/10.1557/mrs2006.186
  7. S. Lin and M. Harada, “$CO_2$ Separation During Hydrocarbon Gasification,” Energy, 30 2186-93 (2005) https://doi.org/10.1016/j.energy.2004.08.022
  8. S. Kurungot, T. Yamaguchi, and S.-i. Nakao, “$Rh/{\gamma}-Al_2O_3$ Catalytic Layer Integrated with Sol-gel Synthesized Microporous Silica Membrane for Compact Membrane Reactor Applications,” Catal. Lett., 86 [4] 273-78 (2003) https://doi.org/10.1023/A:1022636606705
  9. H. Uhlig, M. Frieβ, P. Lamparter, and S. Steeb, “Local Order of Polymer Derived Amorphous $Si_xC_yN_z$,” J. Appl. Phys., 83 [11] 5714-18 (1998) https://doi.org/10.1063/1.367426
  10. A Data Sheet for the Si/C/N Precursor Polymer used in this Study is Available at: http://www.kioncorp.com/datasheets.html
  11. S. Brunauer, P. H. Emmet, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., 60 309-19 (1938) https://doi.org/10.1021/ja01269a023
  12. B. C. Lippens and J. H. de Boer, “Studies on Pore Systems in Catalysts V: The t Method,” J. Catal., 4 [3] 319-23 (1965) https://doi.org/10.1016/0021-9517(65)90307-6
  13. G. Horvath and K. Kawazoe, “Method for The Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon,” J. Chem. Eng. Japan, 16 [6] 470-75 (1983) https://doi.org/10.1252/jcej.16.470
  14. H. Suda, H. Yamauchi, Y. Uchimaru, I. Fujiwara, and K. Haraya, “Preparation and Gas Permeation Properties of Silicon Carbide Based Inorganic Membranes for Hydrogen Separation,” Desalination, 193 252-55 (2006) https://doi.org/10.1016/j.desal.2005.04.143
  15. John P. Dismukes, Jack W. Johnson, John S. Bradley, and John M. Millar, “Chemical Synthesis of Microporous Nonoxide Ceramics from Polysilazanes,” Chem. Mater., 9 [3] 699-706 (1997) https://doi.org/10.1021/cm9603563
  16. Zhe Chen, K. Prasad, C.Y. Li, S.S. Su, D. Gui, P.W. Lu, X. He, and S. Balakumar, “Characterization and Performance of Dielectric Diffusion Barriers for Cu Metallization,” Thin Solid Films, 462-463 223-26 (2004) https://doi.org/10.1016/j.tsf.2004.05.036
  17. F. Bauer, U. Decker, A. Dierdorf, H. Ernst, R. Heller, H. Liebe, and R. Mehnert, “Preparation of Moisture Curable Polysilazane Coatings Part I. Elucidation of Low Temperature Curing Kinetics by FT-IR Spectroscopy,” Prog. Org. Coat., 53 [3] 183-90 (2005) https://doi.org/10.1016/j.porgcoat.2005.02.006
  18. J.H. Wang, P.T. Liu, T.S. Chang, T.C. Chang and L.J. Chen, “Structural Characteristics and Interfacial Reactions of Low Dielectric Constant Porous Polysilazane for Cu Metallization,” Thin Solid Films, 469-470 393-97 (2004) https://doi.org/10.1016/j.tsf.2004.09.014
  19. Z. Li, K. Kusakabe, and S. Morooka, “Preparation of Thermostable Amorphous Si-C-O Membrane and its Applicatino to Gas Separation at Elevated Temperature,” J. Membrane Sci., 118 159-68 (1996) https://doi.org/10.1016/0376-7388(96)00086-5
  20. Y. Iwamoto, K. Sato, T. Kato, T. Inada and Y. Kubo, “A Hydrogen -Permselective Amorphous Silica Membrane Derived from Polysilazane,” J. Eu. Ceram. Soc., 25 257-64 (2005) https://doi.org/10.1016/j.jeurceramsoc.2004.08.007

Cited by

  1. Formation of Bioactive Ceramic Foams by Polymer Pyrolysis and Self-Blowing vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.412
  2. Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.625
  3. Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics vol.52, pp.1, 2015, https://doi.org/10.4191/kcers.2015.52.1.61
  4. Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports vol.52, pp.3, 2015, https://doi.org/10.4191/kcers.2015.52.3.180