DOI QR코드

DOI QR Code

Evaluation of Equations for Estimating Pan Evaporation Considering Regional Characteristics

지역특성을 고려한 pan 증발량 산정식 평가

  • 임창수 (청운대학교 철도행정토목학과) ;
  • 윤세의 (경기대학교 토목환경공학부) ;
  • 송주일 (경기대학교 토목환경공학부)
  • Received : 2008.09.25
  • Accepted : 2008.12.17
  • Published : 2009.01.31

Abstract

The climate change caused by global warming may affect on the hydro-meteorologic factor such as evaporation (IPCC, 2001). Furthermore, it is also necessary that the effect of climate change according to geographical condition on evaporation should be studied. In this study, considering geographical and topographical conditions, the 6 evaporation equations that have been applied to simulate annual and monthly pan evaporation were compared. 56 climatologic stations were selected and classified, basing on the geographical and topographical characteristics (urbanization, topographical slope, proximity to coast, and area of water body). The evaporation equations currently being used are applied. These evaporation equations are Penman, Kohler-Nordenson-Fox (KNF), DeBruin-Keijman, Priestley-Taylor, Hargreaves, and Rohwer. Furthermore, Penman equation was modified by calibrating the parameters of wind function and was verified using relative error. The study results indicate that the KNF equation compared best with the pan: relative error was 8.72%. Penman equation provided the next-best values for evaporation relative to the pan: relative error was 8.75%. The mass-transfer method (Rohwer) provided the worst comparison showing relative error of 33.47%. In case that there is a close correlation between wind function and wind speed, modified Penman equation provided a better estimate of pan evaporation.

지구가 온난화됨에 따라서 발생되는 기후변화는 증발과 같은 수문순환과정에 직접적인 영향을 주는 것으로 보고된 바 있다(IPCC, 2001). 또한 지역특성에 따른 기후변화가 증발에 미치는 영향을 파악하는 것은 필요하다. 본 연구에서는 지리지형적 특성을 고려하면서, 연별 pan 증발량을 모의하기 위한 6개 증발식들의 적용성을 비교 검토하였다. 이를 위하여, 전국 56개 연구지역을 지리지형적 특성(도시화율, 해안근접성, 지역 평균경사, 수역면적)에 따라서 분류하고, 기존에 제안된 증발식(Penman, Kohler-Nordenson-Fox(KNF), DeBruin-Keijman, Priestley-Taylor, Hargreaves, Rohwer)을 적용하여 pan 증발량과 비교 검토하였다. 또한 Penman 증발식의 풍속함수를 보정하고 보정된 식의 적용성을 검증하였다. 연구결과에서 KNF식은 가장 pan 증발량과 유사한 결과를 보여서 8.72%의 상대오차를 보였고, 그 다음으로 Penman 식은 8.75%의 상대오차를 보였으며, 반면에 질량이동에 근거한 Rohwer 식이 기장 큰 상대오차(33.47%)를 보였다. 그리고 풍속함수와 풍속과의 상관관계가 높게 나타나는 경우 Penman 식의 풍속함수 보정을 통하여 증발량 산정의 정확도를 높일 수 있었다.

Keywords

References

  1. 이광호, 김문일(1985) 증발량의 시공간적 변화. 한국수문학회지, 한국수문학회, 제18권, 제3호, pp. 243-251.
  2. 조희구(1973) 기후요소에 의한 증발량 연구. 한국수문학회지, 한국수문학회, 제6권, 제1호, pp. 5-12.
  3. 한진수, 이부용(2005) 해남 농경지에서 자유수면 증발 관측과 해석. 한국농림기상학회지, 한국농립기상학회, 제7권, 제1호, pp. 91-97.
  4. Abtew, W. (2001) Evaporation estimation for lake okeechobee in south florida. J. Irr. Drainage Eng. Amer. Soc. Civil Eng. Vol. 127, No. 3, pp. 140-147. https://doi.org/10.1061/(ASCE)0733-9437(2001)127:3(140)
  5. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO.
  6. Bornstein, R. and Johnson, D.S. (1977) Urban-rural wind velocity differences. Atmospheric Environment, Vol. 11, pp. 597-604. https://doi.org/10.1016/0004-6981(77)90112-3
  7. Burman, R.D. and Pochop, L.O. (1994) Evaporation, evapotranspiration and climate data. Developments in atmospheric science, Vol. 22, Elseiver Science, Amsterdam.
  8. Chen, D., Gao, G., Xu, C.-Y., Guo, J., and Ren, G. (2005) Comparison of the thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China. Climate Research, Vol. 28, pp. 123-132. https://doi.org/10.3354/cr028123
  9. Chow, S.D. (1992) The urban climate of shanghai. Atmospheric Environment, Vol. 26B, No. 1, pp. 9-15.
  10. DeBruin, H.A.R. and Keijman, J.Q. (1979) The priestley-taylor evaporation model applied to a large, shallow lake in the Netherlands. J. of Applied Meteorology, Vol. 18, pp. 898-903. https://doi.org/10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2
  11. Droogers, P. and Allen, R.G. (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, Vol. 16, pp. 33-45. https://doi.org/10.1023/A:1015508322413
  12. Ferguson, H.L. and Den Hartog, G. (1975) Meteorological studies of evaporation at Perch lake, Ontario. Hydrological Studies on a Small Basin on the Canadian Shield-Evaporation Studies, P.J. Barry, Ed. AECL Chalk River Nuclear Laboratories, pp. 417-448.
  13. Flint, A.L. and Childs, S.W. (1991) Use of the priestley-taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agricultural and Forest Meteorology, Vol. 56, pp. 247-260. https://doi.org/10.1016/0168-1923(91)90094-7
  14. Hargreaves, G.H. and Samani, Z.A. (1985) Reference crop evapotranspiration from temperature, Appl. Engr. Agric, Vol. 1, pp. 96-99. https://doi.org/10.13031/2013.26773
  15. Henry, J.A. and Dicks, S.E. (1985) Urban and rural humidity distribution: Relationships to surface materials and land use. J. of Climatology, Vol. 5, pp. 53-62. https://doi.org/10.1002/joc.3370050105
  16. IPCC (2001) Climate Change: Working Group 1, The Scientific Basis.
  17. Irmak, S. and Haman, D.Z. (2003) Evaluation of five methods for estimating class A pan evaporation in a humid climate. Hort. Technology, Vol. 13, No. 3, pp. 500-508.
  18. Jauregui, E., Klaus, D., and Lauer, W. (1978) On the estimation of potential evaporation in Central Mexico. Colloquium Geographicum, Band 13, pp. 163-190. Dummlers Verlag, Bonn.
  19. Jensen, M.E. (ed). (1974) Consumptive use of water and irrigation water requirements. Tech. Rpt. Com. Irr. Water Requirement, Irr. Drainage Div., Amer. Soc. Civil Eng., Davis, Calif.
  20. Kohler, M.A. (1954) Lake and pan evaporation. Water loss investigation Vol. 1, Lake Hefner studies. U.S. Geol. Surv. Paper 269.
  21. Kohler, M.A., Nordenson, T.J., and Fox, W.E. (1955) Evaporation from pans and lakes. U.S. Dept. Commerce Research. Paper. No. 38.
  22. Kohler, M.A. and Richards, M.M. (1962) Multicapacity basin accounting for predicting runoff from storm precipitation. J. Geophys. Res. Vol. 67, pp. 5187-5197. https://doi.org/10.1029/JZ067i013p05187
  23. Lage, M., Bamouh, A., Karrou, M., and Mourid, M.E. (2003) Estimation of rice evapotranspiration using a microlysimeter technique and comparison with FAO Penman-Monteith and Pan evaporation methods under Moroccan conditions. Agronomie, Vol. 23, pp. 625-631. https://doi.org/10.1051/agro:2003040
  24. Lamoreux, W.W. (1962) Modern evaporation formula adapted to computer use. Monthly Weather Rev., Vol. 90, pp. 26-28. https://doi.org/10.1175/1520-0493(1962)090<0026:MEFATC>2.0.CO;2
  25. Linacre, E.T. (1993) Data sparse estimation of potential evapotranspiration using a simplified Penman equation. Agric. Forest Meteorol. Vol. 64, pp. 225-237.
  26. Mukammal, E.I. and Neumann, H.H. (1977) Application of the Priestley-Taylor evaporation model to assess the influence of soil moisture on the evaporation from a large weighing lysimeter and class A pan. Boundary-Lay. Met., Vol. 14, pp. 243-256.
  27. Penman, H.L. (1948) Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. London, Vol. A193, pp. 120-146.
  28. Penman, H.L. (1956) Evaporation: an introductoty survey. Netherlands J. of Agricultural Science, Vol. 4, pp. 9-29.
  29. Pochop, L., Borrelli, J., and Hasfurther, V. (1984) Design characteristics for evaporation ponds in Wyoming. Wyoming Water Research Center Final Report, Wyoming.
  30. Priestley, C.H.B. and Taylor, R.J. (1972) On the assessment of the surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  31. Qiu, G.Y., Miyamoto, K., Sase, S., Gao, Y., Shi, P., and Yano, T. (2002) Comparison of the three temperature model and conventional models for estimating transpiration. Japanese Agricultural Research Quarterly, Vol. 36, No. 2, pp. 73-82. https://doi.org/10.6090/jarq.36.73
  32. Rohwer, C. (1931) Evaporation from free water surfaces. USDA Tech. Bul. No. 271.
  33. Sellers, W.D. (1965) Physical Climatology. University of Chicago Press, Chicago, IL.
  34. Stewart, R.B. and Rouse, W.R. (1976) A simple method for determining the evaporation from shallow lakes and ponds. Water Resour. Res., Vol. 12, pp. 623-628. https://doi.org/10.1029/WR012i004p00623
  35. Stewart, R.B. and Rouse, W.R. (1977) Substantiation of the Priestley-Taylor parameters ${\alpha}$=1.26 for potential evaporation in high latitudes. J. Appl. Meteor., Vol. 16, pp. 649-650. https://doi.org/10.1175/1520-0450(1977)016<0649:SOTPAT>2.0.CO;2
  36. Trajkovic, S. (2005) Temperature-based approaches for estimating reference evapotranspiration. J. of Irrigation and Drainage Engineering, Vol. 131, No. 4, pp. 316-323. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316)
  37. Valiantzas, J.D. (2006) Simplified versions for the penman evaporation equation using routine weather data. J. of Hydrology, Vol. 331, pp. 690-702. https://doi.org/10.1016/j.jhydrol.2006.06.012
  38. WMO. (1976) The CIMO International Evaporimeter Comparisons. Final Report No. 449, 38pp.
  39. Yague, C., Zurita, E., and Martinez, A. (1991) Statistical analysis of the Madrid urban heat island. Atmospheric Environment, Vol. 25B, No. 3, pp. 327-332.