DOI QR코드

DOI QR Code

Propagation Analysis of Dam Break Wave using Approximate Riemann solver

Riemann 해법을 이용한 댐 붕괴파의 전파 해석

  • 김병현 (경북대학교 건축.토목공학부 BK21사업단) ;
  • 한건연 (경북대학교 건축.토목공학부) ;
  • 안기홍 (한국수자원공사 댐.유역관리처)
  • Received : 2009.05.18
  • Accepted : 2009.07.03
  • Published : 2009.09.30

Abstract

When Catastrophic extreme flood occurs due to dam break, the response time for flood warning is much shorter than for natural floods. Numerical models can be powerful tools to predict behaviors in flood wave propagation and to provide the information about the flooded area, wave front arrival time and water depth and so on. But flood wave propagation due to dam break can be a process of difficult mathematical characterization since the flood wave includes discontinuous flow and dry bed propagation. Nevertheless, a lot of numerical models using finite volume method have been recently developed to simulate flood inundation due to dam break. As Finite volume methods are based on the integral form of the conservation equations, finite volume model can easily capture discontinuous flows and shock wave. In this study the numerical model using Riemann approximate solvers and finite volume method applied to the conservative form for two-dimensional shallow water equation was developed. The MUSCL scheme with surface gradient method for reconstruction of conservation variables in continuity and momentum equations is used in the predictor-corrector procedure and the scheme is second order accurate both in space and time. The developed finite volume model is applied to 2D partial dam break flows and dam break flows with triangular bump and validated by comparing numerical solution with laboratory measurements data and other researcher's data.

댐 붕괴로 인한 극한홍수가 발생하였을 경우, 홍수경보에 대한 대응시간은 일반적인 홍수의 경우보다 훨씬 짧다. 수치모형은 홍수파의 전파양상을 예측하고, 범람지역, 홍수파 도달시간 그리고 침수심 등에 관한 정보를 제공하는데 있어 강력한 도구가 될 수 있다. 그러나 댐 붕괴로 인한 홍수파의 전파는 불연속 흐름이나 마른하도의 전파를 포함하고 있으므로, 수학적으로 표현하기 어려운 경우가 많다. 그럼에도 불구하고 최근에 유한체적기법을 이용하여 댐 붕괴로 인한 홍수범람을 모의하기 위한 수치모형의 개발이 많이 이루어졌다. 유한체적기법은 적분보존형 방정식을 기본으로 하고 있으므로, 불연속 흐름이나 충격파의 해석에 용이하다. 따라서, 본 연구에서는 2차원 보존형 천수방정식의 해석을 위해 유한체적기법과 Riemann 근사해법을 이용한 수치모형을 개발하였다. 그리고 예측단계와 수정단계에서 연속방정식과 운동량 방정식의 보존변수 재구성을 위해 수면경사법과 연계한 MUSCL 기법을 적용하여 시간과 공간에서 2차정확도를 얻었다. 개발한 유한체적모형을 2차원 부분적 댐 붕괴 해석 및 삼각형 융기를 가진 하도에 대한 댐 붕괴 해석에 적용하고, 적용결과를 실험자료 및 기존 연구자의 계산결과와 비교하여 개발모형을 검증하였다.

Keywords

References

  1. 김대홍, 조용식(2005) 불규칙 지형에 적용가능한 쌍곡선형 천수 방정식을 위한 개선표면경사법. 대한토목학회 논문집, 대한토목학과, 제25권, 제3B호, pp. 223-229.
  2. 김우구, 정관수, 김재한(2003) WAF 기법을 이용한 천수방정식 해석. 한국수자원학회 논문집, 한국수자원학회, 제36권, 제5호, pp. 777-785. https://doi.org/10.3741/JKWRA.2003.36.5.777
  3. 최규현(2004) 레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립, 공학박사학위논문, 경북대학교.
  4. Alcrudo, F. and Soares Frazao, S. (2000) Conclusions from the 1st CADAM Meeting-Wallingford, UK. In Soares Frazao., S, Morris, M., and Zech, Y. (eds.), Concerted Action on DAmbreak Modelling. Universite Catholique de Louvain. (CDROM).
  5. Bai, Y.C., Xu, D., and Lu, D.Q. (2007) Numerical simulation of two-dimensional dam-break flows in curved channels. Journal of Hydrodynamics, Vol. 19, No. 6, pp. 726-735. https://doi.org/10.1016/S1001-6058(08)60010-4
  6. Bradford, S.F. and Sanders, B.F. (2002) Finite-volume model for shallow-water flooding of arbitrary topography. Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 3, pp. 289-298. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(289)
  7. Delis, A.I. and Skeels, C.P. (1998) TVD Schemes for open channel flow. International Journal for Numerical Method in Fluids, Vol. 26, No. 7, pp. 791-809. https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7<791::AID-FLD688>3.0.CO;2-N
  8. Fraccarollo, L. and Toro, E.F. (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. Journal of Hydraulic Research, IAHR, Vol. 33, No. 6, pp. 843-864. https://doi.org/10.1080/00221689509498555
  9. Frazao, S.S. and Zech, Y. (2002) Dam break in channels with $90^{\circ}$ bend. Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 11, pp. 956-968. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:11(956)
  10. Guo, W.D., Lai, J.S., and Lin, G.F. (2007) Hybrid flux-splitting Finite-volume schemes for shallow-water flow simulations with source terms. Journal of Mechanics, Vol. 23, No. 4, pp. 399-414. https://doi.org/10.1017/S1727719100001453
  11. Huang, G.F., Zhang, Y.F., and Wu, C. (2005) Analytical solutions for 1-D dam break flood on sloping channel bed. Journal of Hydrodynamics, Ser. A, Vol. 20, No. 5, pp. 597-603.
  12. Jha, A.K., Akiyama, J., and Ura, M. (2000) Flux-difference splitting schemes for 2D flood flows. Journal of hydraulic Engineering, ASCE, Vol. 126, No. 1, pp. 33-42. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(33)
  13. Lauber, G. and Hager, W.H. (1998) Experiments to dam break wave: horizontal channel. Journal of Hydraulic Research, Vol. 36, No. 3, pp. 291-307. https://doi.org/10.1080/00221689809498620
  14. Lauber, G. and Hager, W.H. (1998) Experiments to dam break wave: sloping channel. Journal of Hydraulic Research, Vol. 36, No. 3, pp. 761-773. https://doi.org/10.1080/00221689809498601
  15. Leveque, R.J. (2002) Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK.
  16. Louaked, M. and Hanich, L. (1998) TVD Scheme for the shallow water equations. Journal of Hydraulic Research, Vol. 36, No. 3, pp. 363-378. https://doi.org/10.1080/00221689809498624
  17. Miller, S. and Chaudry, M.H. (1989) Dam break flows in curved channel. Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 11, pp. 1465-1478. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:11(1465)
  18. Mingham, C.G. and Causon, D.M. (1998) High-resolution finitevolume method for shallow water flows. Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 6, pp. 605-614. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(605)
  19. Tseng, M.H. and Chu, C.R. (2000) Two dimensional shallow water flows simulation using TVD-Mac cormack scheme. Journal of Hydraulic Research, Vol. 38, No. 2, pp. 123-131. https://doi.org/10.1080/00221680009498347
  20. Valiani, A., Caleffi, V., and Zanni, A. (2002) Case study: malpasset dam-break simulation using a two-dimensional finite volume method. Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 5, pp. 460-472. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460)
  21. Ying, X., Wang, S.S.Y., and Khan, A.A. (2003) Numerical simulation of flood inundation due to dam and levee breach. World Water Congress 2003, ASCE, Philadelphia, Pennsylvania, Vol. 1, pp. 1-9.
  22. Zhao, D.H., Shen, H.W., Tabios, G.Q., Lai, J.S., and Tan, W.Y (1996) Finite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering, ASCE, Vol. 120, No. 7, pp. 863-883. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:7(863)
  23. Zhou, J.G., Causon, D.M., Mingham, C.G., and Ingram, D.M. (2004) Numerical prediction of dam-break flows in general geometries with complex bed topography. Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 4, pp. 332-340. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:4(332)