DOI QR코드

DOI QR Code

Metabolism of Ginsenosides to Bioactive Compounds by Intestinal Microflora and Its Industrial Application

  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University)
  • Published : 2009.09.30

Abstract

Korean ginseng, which contains ginsenosides and polysaccharides as its main constituents, is orally administered to humans. Ginsenosides and polysaccharides are not easily absorbed by the body through the intestines due to their hydrophilicity. Therefore, these constituents which include ginsenosides Rb1, Rb2, and Rc, inevitably come into contact with intestinal microflora in the alimentary tract and can be metabolized by intestinal microflora. Since most of the metabolites such as compound K and protopanaxatriol are nonpolar compared to the parental components, these metabolites are easily absorbed from the gastrointestinal tract. The absorbed metabolites may express pharmacological actions, such as antitumor, antidiabetic, anti-inflammatory, anti-allergic, and neuroprotective effects. However, the activities that metabolize these constituents to bioactive compounds differ significantly between individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. Recently, ginseng has been fermented with enzymes or microbes to develop ginsengs that contain these metabolites. However, before using these enzymes and probiotics, their safety and biotransforming activity should be assessed. Intestinal microflora play an important role in the pharmacological action of orally administered ginseng.

Keywords

References

  1. Li CP, Li RC. An introductory note to ginseng. Am. J. Chin. Med. 1: 249-61 (1973) https://doi.org/10.1142/S0192415X73000279
  2. Lee TK, Johnke RM, Allison RR, OBrien KF, Dobbs Jr L.J. Radioprotective potential of ginseng. Mutagenesis. 20: 237-243 (2005) https://doi.org/10.1093/mutage/gei041
  3. Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav. 75: 687-700 (2003) https://doi.org/10.1016/S0091-3057(03)00126-6
  4. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-93 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  5. Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F. Immunomodulatory effects of two extracts of Panax ginseng C. A. Meyer. Drugs Exp Clin Res. 16: 537-42 (1990)
  6. See DM, Broumand N, Sahl L, Tilles JG. In vitro effects of echinacea and ginseng on natural killer and antibody-dependent cell cytotoxicity in healthy subjects and chronic fatigue syndrome or acquired immunodeficiency syndrome patients. Immunopharmacol. 35: 229-35 (1997) https://doi.org/10.1016/S0162-3109(96)00125-7
  7. Singh VK, Agarwhal SS, Gupta BM. Immunomodulatory activity of Panax ginseng extract. Planta Med. 50: 462-65 (1984) https://doi.org/10.1055/s-2007-969773
  8. Fulder SJ. Ginseng and the hypothalamic-pituitary control of stress. Am J Chin Med. 9: 112-18 (1981) https://doi.org/10.1142/S0192415X81000159
  9. Hiai S, Yokoyama H, Oura H, Yano S. Stimulation of pituitary-adrenocortical system by ginseng saponin. Endocrinol Jpn 26: 661-65 (1979) https://doi.org/10.1507/endocrj1954.26.661
  10. Nocerino E, M Amato, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 71(Suppl.): 1S-5S (2000) https://doi.org/10.1016/S0367-326X(00)00170-2
  11. Shibata S, Tanaka O, Soma K, Ando T, Iida Y, Nakamura H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron Lett. 42: 207-13 (1965)
  12. Shibata S, Tanaka O, Ando T, Sado M, Tsushima S, Ohsawa T. Chemical studies on oriental plant drugs. XIV. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem Pharm. Bull 14: 595-600 (1966) https://doi.org/10.1248/cpb.14.595
  13. Matsuda H, Namba K, Fukuda S, Tani T, Kubo M. Pharmacological study on Panax ginseng C. A. Meyer. IV. Effects of red ginseng on experimental disseminated intravascular coagulation. (3). Effect of ginsenoside-Ro on the blood coagulative and fibrinolytic system. Chem Pharm Bull. 34: 2100-4 (1986) https://doi.org/10.1248/cpb.34.2100
  14. Wang X, Sakuma T, Asafu-Adjaye E, Shiu GK. Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS. Anal Chem. 71: 1579-84 (1999) https://doi.org/10.1021/ac980890p
  15. Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T. Chemical studies on crude drug precession. I. On the constituents of ginseng radix rubura (I). Yakugaku Zasshi 103: 612-622 (1983)
  16. Kown SW, Han SB, Park IH, Kim JM, Park MK, Park JH. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr. A 921: 335-339 (2001) https://doi.org/10.1016/S0021-9673(01)00869-X
  17. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod. 63: 1702-4 (2000) https://doi.org/10.1021/np990152b
  18. Konno C, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycemic activity of panaxans A, B, C, D and E, glycans of Panax ginseng roots. Planta Med. 50: 434-439 (1984) https://doi.org/10.1055/s-2007-969757
  19. Li LG. Determination of the polysaccharide content in Jilin red ginseng and Korean ginseng] Zhong Yao Tong Bao. 12: 40-1 (1987)
  20. Chang YS, Seo EK, Gyllenhaal C, Block KI. Panax ginseng: a role in cancer therapy? Integr Cancer Ther. 2: 13-33 (2003) https://doi.org/10.1177/1534735403251167
  21. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern. Med Rev. 9: 259-74 (2004)
  22. Wakabayashi C, Hasegawa H, Murata J, Saiki I, In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res1998; 9: 411-7 (1998)
  23. Xie JT, Mchendale S, Yuan CS. Ginseng and diabetes. Am. J. Chin. Med. 33: 397-404 (2005) https://doi.org/10.1142/S0192415X05003004
  24. Yokozawa T, Kobayashi T, Oura H, Kawashima Y. Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem Pharm Bull. 33: 869-72 (1985) https://doi.org/10.1248/cpb.33.869
  25. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol. 133: 113-120 (2004) https://doi.org/10.1159/000076383
  26. Park EK, Choo MK, Kim EJ, Han MJ, Kim DH. Antiallergic activity of ginsenoside Rh2. Biol. Pharm. Bull 2003; 26:1581-4 (2003) https://doi.org/10.1248/bpb.26.1581
  27. Choo MK, Park EK, Han MJ, Kim D-H. Antiallergic activity of ginseng and its ginsenosides. Planta Med. 69: 518-522 (2003) https://doi.org/10.1055/s-2003-40653
  28. Kim ND, Kang SY, Kim MJ, Park JH, Schini-Kerth VB. The ginsenoside Rg3 evokes endothelium-independent relaxation in rat aortic rings: role of K+ channels. Eur J Pharmacol 1999; 367: 51-57 https://doi.org/10.1016/S0014-2999(98)00899-1
  29. Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR. Rec chia, J., Beltz, G.A., Newman, G.W., Newman, M.J., Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol. 148: 1519-1525 (1992)
  30. Rivera E, Hu S, Concha C. Ginseng and aluminium hydroxide act synergistically as vaccine adjuvants.Vaccine 21:1149-57 (2003) https://doi.org/10.1016/S0264-410X(02)00518-2
  31. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, Min BI, Hong MC, Kim SY, Bae H. Ginsenoside Rg1 enhances CD4(+) Tcell activities and modulates Th1/Th2 differentiation. Int. Immunopharmacol. 4: 235-44 (2004) https://doi.org/10.1016/j.intimp.2003.12.007
  32. Park EK, Choo MK, Oh JK, Ryu JH, Kim DH. Ginsenoside Rh2 reduces ischemic brain injury in rats. Biol. Pharm. Bull. 27: 433-6 (2004) https://doi.org/10.1248/bpb.27.433
  33. Shieh PC, Tsao CW, Li JS, Wu HT, Wen YJ, Kou DH, Cheng JT. Role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the action of ginsenoside $\text Rh_2$ against betaamyloid- induced inhibition of rat brain astrocytes. Neurosci Lett. 434: 1-5 (2008) https://doi.org/10.1016/j.neulet.2007.12.032
  34. Ahn JY, Song JY, Yun YS, Jeong G, Choi IS. Protection of Staphylococcus aureus-infected septic mice by suppression of early acute inflammation and enhanced antimicrobial activity by ginsan. FEMS Immunol. Med Microbiol. 46: 187-97 (2006)
  35. Konno C, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycemic activity of panaxans A, B, C, D and E, glycans of Panax ginseng roots. Planta Med. 50: 434-439 (1984) https://doi.org/10.1055/s-2007-969757
  36. Ng TB, Yeung HW. Hypoglycemic constituents of Panax ginseng. Gen Pharmacol. 16: 549-52 (1985) https://doi.org/10.1016/0306-3623(85)90140-5
  37. Shin HJ, Kim YS, Kwak YS, Song YB, Kim YS, Park JD. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP). Planta Med. 70: 1033-38 (2004) https://doi.org/10.1055/s-2004-832643
  38. Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res. 7:323-31 (1987)
  39. Kobashi K, Kobashi K, Akao T. Relation of intestinal bacteria to pharmacological effects of glycosides. Bioscience Microflora. 16: 1-7 (1997) https://doi.org/10.12938/bifidus1996.16.1
  40. Kim DH, Kim DH. Herbal medicines are activated by intestinal microflora. Nat Prod Sci. 8: 35-43 (2002)
  41. Tawab MA, Bahr U, Karas M, Wurglics M. Schubert-Zsilavecz M.Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065-71 (2003) https://doi.org/10.1124/dmd.31.8.1065
  42. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-Rb1 and -Rb2 in the digestive tract of rats. Chem Pharm Bull. 39: 2357-61 (1991) https://doi.org/10.1248/cpb.39.2357
  43. Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH. Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int. 25: 1069-73 (2005) https://doi.org/10.1111/j.1478-3231.2005.01068.x
  44. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol. 50: 1155-60 (1998) https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  45. Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside $\text Rb_1$ by intestinal bacteria, in rat plasma after oral administration--measurement of compound K by enzyme immunoassay. Biol Pharm Bull. 21: 245-9 (1998) https://doi.org/10.1248/bpb.21.245
  46. Lee SJ, Ko WG, Kim JH, Sung JH, Moon CK, Lee BH. Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochem Pharmacol. 60: 677-85 (2000) https://doi.org/10.1016/S0006-2952(00)00362-2
  47. Kim YS, Kim JJ, Cho KH, Jung WS, Moon SK, Park EK, Kim DH. Biotransformation of ginsenoside Rb1, crocin, amygdalin, geniposide, puerarin, ginsenoside Re, hesperidin, poncirin, glycyrrhizin, and baicalin by human fecal microflora and its relation to cytotoxicity against tumor cells. J Microbiol Biotechnol. 18: 1109-14 (2008)
  48. Tatsuka M, Maeda M, Ota T. Anticarcinogenic effect and enhancement of metastatic potential of BALB/c 3T3 cells by ginsenoside Rh(2). Jpn J Cancer Res. 92: 1184-9 (2001) https://doi.org/10.1111/j.1349-7006.2001.tb02138.x
  49. Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci. 16 Suppl: S28-37 (2001) https://doi.org/10.3346/jkms.2001.16.S.S28
  50. Shin JE, Park EK, Kim EJ, Hong YH, Lee KT, Kim DH. Cytotoxicity of compound K and ginsenoside $\text Rh_2$, main biotransformants of ginseng saponins by bifidobacteria, against some tumor cells. J Ginseng Res. 27: 129-134. (2003) https://doi.org/10.5142/JGR.2003.27.3.129
  51. Choo MK, Sakurai H, Kim DH, Saiki I. A ginseng saponin metabolite suppresses tumor necrosis factor-alpha-promoted metastasis by suppressing nuclear factor-kappaB signaling in murine colon cancer cells. Oncol Rep. 19: 595-600 (2008)
  52. Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, Kudoh K, Nagata I, Shinomiya N. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 89: 733-40 (1998) https://doi.org/10.1111/j.1349-7006.1998.tb03278.x
  53. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-$\text Rb_2$. Biol Pharm. Bull. 17: 635-9 (1994) https://doi.org/10.1248/bpb.17.635
  54. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tonooka S, Samukawa K, Azuma I. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-$\text Rb_2$, 20(R)- and 20(S)-ginsenoside-Rg2, of red ginseng. Biol Pharm Bull. 18: 1197-202 (1995) https://doi.org/10.1248/bpb.18.1197
  55. Shin YW, Bae EA, Kim SS, Lee YC, Kim DH. Effect of gin senoside $\text Rb_1$ and compound K in chronic oxazoloneinduced mouse dermatitis. Int Immunopharmacol. 5: 1183-91 (2005) https://doi.org/10.1016/j.intimp.2005.02.016
  56. Choo MK, Park EK, Han MJ, Kim DH. Antiallergic activity of ginseng and its ginsenosides. Planta Med. 69: 518-22 (2003) https://doi.org/10.1055/s-2003-40653
  57. Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside $\text Rb_1$ and $\text Rb_2$ from human intestinal bacteria. Biol Pharm Bull. 23: 1481-5 (2000) https://doi.org/10.1248/bpb.23.1481
  58. Bae EA, Han MJ, Kim EJ, Kim DH. Transformation of ginseng saponins to ginsenoside $\text Rh_2$ by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res. 27: 61-7 (2004) https://doi.org/10.1007/BF02980048
  59. Bae EA, Han MJ, Choo MK, Park SY, Kim DH. Metabolism of 20(S)- and 20(R)-ginsenoside $\text Rg_3$ by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull 25: 58-63 (2002) https://doi.org/10.1248/bpb.25.58
  60. Shin HY, Park SY, Sung JH, Kim DH. Purification and characterization of alpha-L-arabinopyranosidase and alpha-Larabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside $\text Rb_2$ and Rc. Appl Environ Microbiol. 69: 7116-23 (2003) https://doi.org/10.1128/AEM.69.12.7116-7123.2003
  61. Bae EA, Shin JE, Kim DH. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull. 28: 1903-8 (2005) https://doi.org/10.1248/bpb.28.1903
  62. Park SY, Bae EA, Sung JH, Lee SK, Kim DH. Purification and characterization of ginsenoside $\text Rb_1$-metabolizing betaglucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem. 65: 1163-9 (2001) https://doi.org/10.1271/bbb.65.1163
  63. Konno C, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycaemic activity of panaxans A, B, C, D and E, glycans of Panax ginseng roots. Planta Med. 50: 434-6 (1984) https://doi.org/10.1055/s-2007-969757
  64. Ng TB, Yeung HW. Hypoglycemic constituents of Panax ginseng. Gen Pharmacol. 16: 549-52 (1985) https://doi.org/10.1016/0306-3623(85)90140-5
  65. Tomoda M, Takeda K, Shimizu N, Gonda R, Ohara N, Takada K, Hirabayashi K. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull. 16: 22-5 (1993) https://doi.org/10.1248/bpb.16.22
  66. Lee SJ, Sung JH, Lee SJ, Moon CK, Lee BH. Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett. 144: 39-43 (1999) https://doi.org/10.1016/S0304-3835(99)00188-3
  67. Kang KA, Kim YW, Kim SU, Chae S, Koh YS, Kim HS, Choo MK, Kim DH, Hyun JW. G1 phase arrest of the cell cycle by a ginseng metabolite, compound K, in U937 human monocytic leukamia cells. Arch Pharm Res. 28: 685-90 (2005) https://doi.org/10.1007/BF02969359
  68. Kang J, Lee Y, No K, Jung E, Sung J, Kim Y, Nam S. Ginseng intestinal metabolite-I (GIM-I) reduces doxorubicin toxicity in the mouse testis. Reprod Toxicol. 16: 291-8 (2002) https://doi.org/10.1016/S0890-6238(02)00021-7
  69. Choi K, Kim M, Ryu J, Choi C. Ginsenosides compound K and Rh(2) inhibit tumor necrosis factor-alpha-induced activation of the NF-kappaB and JNK pathways in human astroglial cells. Neurosci Lett. 421: 37-41 (2007) https://doi.org/10.1016/j.neulet.2007.05.017
  70. Jung SH, Woo MS, Kim SY, Kim WK, Hyun JW, Kim EJ, Kim DH, Kim HS. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int J Cancer. 118: 490-7 (2006) https://doi.org/10.1002/ijc.21356
  71. Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. Inhibitory effect of ginsenoside $\text Rb_1$ and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull. 28: 652-6 (2005) https://doi.org/10.1248/bpb.28.652
  72. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull. 25: 743-7 (2002) https://doi.org/10.1248/bpb.25.743
  73. Shin YW, Kim DH. Antipruritic effect of ginsenoside $\text Rb_1$ and compound k in scratching behavior mouse models. J Pharmacol Sci. 99: 83-8 (2005) https://doi.org/10.1254/jphs.FP0050260
  74. Cai BX, Luo D, Lin XF, Gao J. Compound K suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair in human keratinocytes. Arch Pharm Res. 31: 1483-8 (2008) https://doi.org/10.1007/s12272-001-2134-x
  75. Kim S, Kang BY, Cho SY, Sung DS, Chang HK, Yeom MH, Kim DH, Sim YC, Lee YS. Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin. Biochem Biophys Res. Commun. 316: 348-55 (2004) https://doi.org/10.1016/j.bbrc.2004.02.046
  76. Yang CS, Ko SR, Cho BG, Shin DM, Yuk JM, Li S, Kim JM, Evans RM, Jung JS, Song DK, Jo EK. The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxin-induced lethal shock. J Cell Mol Med. 12: 1739-53 (2008) https://doi.org/10.1111/j.1582-4934.2007.00181.x
  77. Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH. Hepatoprotective effect of ginsenoside $\text Rb_1$ and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int. 25: 1069-73 (2005) https://doi.org/10.1111/j.1478-3231.2005.01068.x
  78. Chang TC, Huang SF, Yang TC, Chan FN, Lin HC, Chang WL. Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered Na+/glucose cotransporter 1 expression. J Agric Food Chem. 55: 1993-8 (2007) https://doi.org/10.1021/jf062714k
  79. Han GC, Ko SK, Sung JH, Chung SH. Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. J Agric Food Chem. 55: 10641-8 (2007) https://doi.org/10.1021/jf0722598
  80. Yoon SH, Han EJ, Sung JH, Chung SH. Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice. Biol. Pharm Bull. 30: 2196-200 (2007) https://doi.org/10.1248/bpb.30.2196
  81. Kim DH, Jung JS, Moon YS, Sung JH, Suh HW, Kim YH, Song DK. Inhibition of intracerebroventricular injection stressinduced plasma corticosterone levels by intracerebroventricularly administered compound K, a ginseng saponin metabolite, in mice. Biol Pharm Bull. 26: 1035-8 (2003) https://doi.org/10.1248/bpb.26.1035
  82. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J Microbiol Biotechnol. 17: 1127-33 (2007)
  83. Lai DM, Tu YK, Liu IM, Chen PF, Cheng JT. Mediation of beta-endorphin by ginsenoside $\text Rh_2$ to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med. 72: 9-13 (2006) https://doi.org/10.1055/s-2005-916177
  84. Niu CS, Yeh CH, Yeh MF, Cheng JT. Increase of adipogenesis by ginsenoside ($\text Rh_2$) in 3T3-L1 cell via an activation of glucocorticoid receptor. Horm Metab Res. 41: 271-6 (2009) https://doi.org/10.1055/s-0028-1103277
  85. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside $\text Rh_2$ are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun. 364: 1002-8 (2007) https://doi.org/10.1016/j.bbrc.2007.10.125
  86. Lee WK, Kao ST, Liu IM, Cheng JT. Ginsenoside $\text Rh_2$ is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats. Horm Metab Res. 39: 347-54 (2007) https://doi.org/10.1055/s-2007-976537
  87. Huang J, Tang XH, Ikejima T, Sun XJ, Wang XB, Xi RG, Wu LJ. A new triterpenoid from Panax ginseng exhibits cytotoxicity through p53 and the caspase signaling pathway in the HepG2 cell line. Arch Pharm Res. 31: 323-9 (2008) https://doi.org/10.1007/s12272-001-1159-8
  88. Kim YS, Jin SH, Lee YH, Kim SI, Park JD. Ginsenoside $\text Rh_2$ induces apoptosis independently of Bcl-2, Bcl-xL, or Bax in C6Bu-1 cells. Arch Pharm Res. 22: 448-53 (1999) https://doi.org/10.1007/BF02979151
  89. Oh JI, Chun KH, Joo SH, Oh YT, Lee SK. Caspase-3-dependent protein kinase C delta activity is required for the progression of Ginsenoside-$\text Rh_2$-induced apoptosis in SK-HEP-1 cells. Cancer Lett. 230: 228-38 (2005) https://doi.org/10.1016/j.canlet.2004.12.043
  90. Ham YM, Lim JH, Na HK, Choi JS, Park BD, Yim H, Lee SK. Ginsenoside-$\text Rh_2$-induced mitochondrial depolarization and apoptosis are associated with reactive oxygen speciesand Ca2+-mediated c-Jun NH2-terminal kinase 1 activation in HeLa cells. J Pharmacol Exp Ther. 319: 1276-85 (2006) https://doi.org/10.1124/jpet.106.109926
  91. Kim SY, Kim DH, Han SJ, Hyun JW, Kim HS. Repression of matrix metalloproteinase gene expression by ginsenoside $\text Rh_2$ in human astroglioma cells. Biochem Pharmacol. 74: 1642-51 (2007) https://doi.org/10.1016/j.bcp.2007.08.015
  92. Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, Im DS. Effects of ginsenosides $\text Rg_3$ and $\text Rh_2$ on the proliferation of prostate cancer cells. Arch Pharm Res. 27: 429-35 (2004) https://doi.org/10.1007/BF02980085
  93. Fei XF, Wang BX, Tashiro S, Li TJ, Ma JS, Ikejima T. Apoptotic effects of ginsenoside $\text Rh_2$ on human malignant melanoma A375-S2 cells. Acta Pharmacol Sin. 2002: 23: 315-22
  94. Xie X, Eberding A, Madera C, Fazli L, Jia W, Goldenberg L, Gleave M, Guns ES. $\text Rh_2$ synergistically enhances paclitaxel or mitoxantrone in prostate cancer models. J Urol 175: 1926-31 (2006) https://doi.org/10.1016/S0022-5347(05)00891-8
  95. Jia WW, Bu X, Philips D, Yan H, Liu G, Chen X, Bush JA, Li G. $\text Rh_2$, a compound extracted from ginseng, hypersensitizes multidrug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol. 82: 431-7 (2004) https://doi.org/10.1139/y04-049
  96. Bae EA, Hyun YJ, Choo MK, Oh JK, Ryu JH, Kim DH. Protective effect of fermented red ginseng on a transient focal ischemic rats. Arch Pharm Res. 27: 1136-40 (2004) https://doi.org/10.1007/BF02975119
  97. Lee E, Kim S, Chung KC, Choo MK, Kim DH, Nam G, Rhim H. 20(S)-ginsenoside $\text Rh_2$, a newly identified active ingredient of ginseng, inhibits NMDA receptors in cultured rat hippocampal neurons. Eur J Pharmacol. 536: 69-77 (2006) https://doi.org/10.1016/j.ejphar.2006.02.038
  98. Park EK, Choo MK, Kim EJ, Han MJ,. Antiallergic activity of ginsenoside $\text Rh_2$. Biol Pharm Bull. 26: 1581-4 (2003) https://doi.org/10.1248/bpb.26.1581
  99. Bae EA, Han MJ, Shin YW, Kim DH. Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides $\text Rg_3$, Rf, and $\text Rh_2$ in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Biol Pharm Bull. 29: 1862-7 (2006) https://doi.org/10.1248/bpb.29.1862
  100. Park YC, Lee CH, Kang HS, Kim KW, Chung HT, Kim HD. Ginsenoside-$\text Rh_1$ and $\text Rh_2$ inhibit the induction of nitric oxide synthesis in murine peritoneal macrophages. Biochem Mol Biol Int. 40: 751-7 (1996)
  101. Bae EA, Kim EJ, Park JS, Kim HS, Ryu JH, Kim DH. Ginsenosides $\text Rg_3$ and $\text Rh_2$ inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferongamma- stimulated BV-2 microglial cells. Planta Med. 72: 627-33 (2006) https://doi.org/10.1055/s-2006-931563
  102. Lee HU, Bae EA, Han MJ, Kim DH. Hepatoprotective effect of 20(S)-ginsenosides $\text Rg_3$ and its metabolite 20(S)- ginsenoside $\text Rh_2$ on tert-butyl hydroperoxide-induced liver injury. Biol. Pharm. Bull. 28: 1992-4 (2005) https://doi.org/10.1248/bpb.28.1992
  103. Wang Z, Zheng Q, Liu K, Li G, Zheng R. Ginsenoside Rh(2) enhances antitumour activity and decreases genotoxic effect of cyclophosphamide. Basic Clin. Pharmacol. Toxicol. 98: 411-5 (2006) https://doi.org/10.1111/j.1742-7843.2006.pto_348.x
  104. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside $\text Rh_1$ possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol. 133: 113-20 (2004) https://doi.org/10.1159/000076383
  105. Shin YW, Bae EA, Kim SS, Lee YC, Lee BY, Kim DH. The effects of ginsenoside Re and its metabolite, ginsenoside $\text Rh_1$, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone-induced mouse dermatitis models. Planta Med. 72: 376-8 (2006) https://doi.org/10.1055/s-2005-916217
  106. Byun BH, Shin I, Yoon YS, Kim SI, Joe CO. Modulation of protein kinase C activity in NIH 3T3 cells by plant glycosides from Panax ginseng. Planta Med. 63: 389-92 (1997) https://doi.org/10.1055/s-2006-957719
  107. Yun TK, Lee YS, Lee YH, Kim SI, Yun HY. Anticarcino genic effect of Panax ginseng C.A. Meyer and identification of active compounds. J. Korean Med Sci. 16 Suppl: S6-18 (2001) https://doi.org/10.3346/jkms.2001.16.S.S6
  108. Kim YS, Kim DS, Kim SI. Ginsenoside $\text Rh_2$ and $\text Rh_3$ induce differentiation of HL-60 cells into granulocytes: modulation of protein kinase C isoforms during differentiation by ginsenoside $\text Rh_2$. Int J Biochem Cell Biol. 30: 327-38 (1998) https://doi.org/10.1016/S1357-2725(97)00141-6
  109. Bae EA, Shin JE, Kim DH. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull. 28: 1903-8 (2005) https://doi.org/10.1248/bpb.28.1903
  110. Lee Y, Jin Y, Lim W, Ji S, Choi S, Jang S, Lee S. A ginsenoside- $\text Rh_1$, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J Steroid Biochem Mol. Biol. 84: 463-8 (2003) https://doi.org/10.1016/S0960-0760(03)00067-0
  111. Masuno H, Kitao T, Okuda H. Ginsenosides increase secretion of lipoprotein lipase by 3T3-L1 adipocytes. Biosci Biotechnol Biochem. 60: 1962-5 (1996) https://doi.org/10.1271/bbb.60.1962
  112. Wang YZ, Chen J, Chu SF, Wang YS, Wang XY, Chen NH, Zhang JT.Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1's metabolites ginsenoside $\text Rh_1$ and protopanaxatriol. J Pharmacol Sci. 109: 504-10 (2009) https://doi.org/10.1254/jphs.08060FP
  113. Liu Y, Ma H, Zhang JW, Deng MC, Yang L. Influence of ginsenoside $\text Rh_1$ and F1 on human cytochrome p450 enzymes. Planta Med. 72: 126-31 (2006) https://doi.org/10.1055/s-2005-873197
  114. Leung KW, Leung FP, Mak NK, Tombran-Tink J, Huang Y, Wong RN. Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells. Br J Pharmacol. 156: 626-37 (2009) https://doi.org/10.1111/j.1476-5381.2008.00066.x
  115. Sun J, Hu S, Song X. Adjuvant effects of protopanaxadiol and protopanaxatriol saponins from ginseng roots on the immune responses to ovalbumin in mice. Vaccine. 25: 1114-20 (2007) https://doi.org/10.1016/j.vaccine.2006.09.054
  116. Han KL, Jung MH, Sohn JH, Hwang JK. Ginsenoside 20Sprotopanaxatriol (PPT) activates peroxisome proliferatoractivated receptor gamma (PPARgamma) in 3T3-L1 adipocytes. Biol Pharm Bull. 29: 110-3 (2006) https://doi.org/10.1248/bpb.29.110
  117. Oh GS, Pae HO, Choi BM, Seo EA, Kim DH, Shin MK, Kim JD, Kim JB, Chung HT. 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide. Cancer Lett. 205: 23-9 (2004) https://doi.org/10.1016/j.canlet.2003.09.037
  118. Usami Y, Liu YN, Lin AS, Shibano M, Akiyama T, Itokawa H, Morris-Natschke SL, Bastow K, Kasai R, Lee KH. Antitumor agents. 261. 20(S)-protopanaxadiol and 20(s)-protopanaxatriol as antiangiogenic agents and total assignment of (1)H NMR spectra. J Nat Prod. 71: 478-81 (2008) https://doi.org/10.1021/np070613q
  119. Wang M, Guilbert LJ, Ling L, Li J, Wu Y, Xu S, Pang P, Shan JJ. Immunomodulating activity of CVT-E002, a proprietary extract from North American ginseng (Panax quinquefolium). J Pharm Pharmacol. 53: 1515-23 (2001) https://doi.org/10.1211/0022357011777882
  120. Tomoda M, Hirabayashi K, Shimizu N, Gonda R, Ohara N. The core structure of ginsenan PA, a phagocytosis-activating polysaccharide from the root of Panax ginseng. Biol Pharm Bull. 17: 1287-91 (1994) https://doi.org/10.1248/bpb.17.1287
  121. Tomoda M, Takeda K, Shimizu N, Gonda R, Ohara N, Takada K, Hirabayashi K. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 16: 22-25 (1993) https://doi.org/10.1248/bpb.16.22
  122. Jie YH, Cammisuli S, Baggiolini M. Immunomodulatory effects of Panax ginseng C. A. Meyer in the mouse. Agents Actions. 15: 386-91 (1984) https://doi.org/10.1007/BF01972376
  123. Gao H, Wang F, Lien EJ, Trousdale MD. Immunostimulating polysaccharides from Panax notoginseng. Pharm Res 13: 1196-200 (1996) https://doi.org/10.1023/A:1016060119425
  124. Hu S, Concha C, Cooray R, Holmberg O. Ginseng enhanced oxidative and phagocytic activities of polymorphonuclear leucocytes from bovine peripheral blood and stripping milk. Vet Res. 26: 155-61 (1995)
  125. Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F. Immunomodulatory effects of two extracts of Panax ginseng C. A. Meyer. Drugs Exp Clin Res. 16: 537-42 (1990)
  126. Kim JY, Germolec DR, Luster MI. Panax ginseng as a potential immunomodulator: studies in mice. Immunopharmacol Immunotoxicol. 12: 257-76 (1990) https://doi.org/10.3109/08923979009019672
  127. Sun XB, Matsumoto T, Kiyohara H, Hirano M, Yamada H. Cytoprotective activity of pectic polysaccharides from the root of panax [sic] ginseng. J Ethnopharmacol. 31: 101-07 (1991) https://doi.org/10.1016/0378-8741(91)90148-7
  128. Kim KH, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, Yun YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med. 64: 110-15 (1998) https://doi.org/10.1055/s-2006-957385
  129. Lim DS, Bae KG, Jung IS, Kim CH, Yun YS, Song JY. Related Articles, Links Anti-septicaemic effect of polysaccharide from Panax ginseng by macrophage activation. J Infet. 45: 32-38 (2002) https://doi.org/10.1053/jinf.2002.1007
  130. Ahn JY, Choi IS, Shim JY, Yun EK, Yun YS, Jeong G, Song JY. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated inflammatory signals. Eur J Immunol. 36: 37-45 (2006) https://doi.org/10.1002/eji.200535138
  131. Shin HJ, Kim YS, Kwak YS, Song YB, Kim YS, Park JD. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP). Planta Med. 70: 1033-38 (2004) https://doi.org/10.1055/s-2004-832643
  132. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J Microbiol Biotechnol. 17: 1127-33 (2007)
  133. Bae EA, Kim NY, Han MJ, Choo MK, Kim DH. Transformation of ginsenosides to compound K by lactic acid bacteria of human intestine. J Microbiol Biotechnol. 13: 9-14 (2003)
  134. Kitaoka K, Uchida K, Okamoto N, Chikahisa S, Miyazaki T, Takeda E, Séi H. Fermented ginseng improves the firstnight effect in humans. Sleep. 32: 413-21 (2009) https://doi.org/10.1093/sleep/32.3.413
  135. Dong A, Ye M, Guo H, Zheng J, Guo D. Microbial transformation of ginsenoside $\text Rb_1$ by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett. 25: 339-44 (2003) https://doi.org/10.1023/A:1022320824000
  136. Han Y, Sun B, Hu X, Zhang H, Jiang B, Spranger MI, Zhao Y. Transformation of bioactive compounds by Fusarium sacchari fungus isolated from the soil-cultivated ginseng. J Agric Food Chem. 55: 9373-9 (2007) https://doi.org/10.1021/jf070354a

Cited by

  1. The Effect of Korean Ginseng and Coptidis rhizome on Plasma Acute Phase Substances and mRNA Expression of Proin.ammatory Cytokines in Spleen of Growing Chicks Following Lipopolysaccharide Injection vol.48, pp.4, 2011, https://doi.org/10.2141/jpsa.011039
  2. Korean Red Ginseng Suppresses Metastasis of Human Hepatoma SK-Hep1 Cells by Inhibiting Matrix Metalloproteinase-2/-9 and Urokinase Plasminogen Activator vol.2012, pp.1741-4288, 2012, https://doi.org/10.1155/2012/965846
  3. Bioconversion of ginsenoside Rc into Rd by a novel α-l-arabinofuranosidase, Abf22-3 from Leuconostoc sp. 22-3: cloning, expression, and enzyme characterization vol.103, pp.4, 2013, https://doi.org/10.1007/s10482-012-9856-2
  4. Lactobacillus ginsenosidimutans sp. nov., isolated from kimchi with the ability to transform ginsenosides vol.103, pp.4, 2013, https://doi.org/10.1007/s10482-012-9868-y
  5. Quality Characteristics and Ginsenosides Composition of Ginseng-Yakju According to the Particle Size of Ginseng Powder vol.18, pp.4, 2013, https://doi.org/10.3746/pnf.2013.18.4.234
  6. Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel vol.30, pp.5, 2015, https://doi.org/10.6116/kjh.2015.30.5.59.
  7. Development of Spherical Granule of Fermented Red Ginseng Extracts vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.1064
  8. Rheological properties, ginsenosides contents, sensory evaluations of Korean red ginseng extracts vol.50, pp.12, 2015, https://doi.org/10.1111/ijfs.12938
  9. Fermented Red Ginseng Potentiates Improvement of Metabolic Dysfunction in Metabolic Syndrome Rat Models vol.8, pp.6, 2016, https://doi.org/10.3390/nu8060369
  10. Moisture Adsorption Preventative Effect of Fermented Red Ginseng Extract Spherical Granules by Using Hydrophobic Compounds vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1153
  11. photothermal effects and apoptosis detection in cancer cells vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2018.1541900