Elastic Imaging of Material Surface by Ultrasonic Atomic Force Microscopy

초음파 원자 현미경을 이용한 재료 표면의 탄성 이미지화

  • Kim, C.S. (Research Institute for Nondestructive Evaluation, Seoul National University of Technology) ;
  • Park, Tae-Sung (Research Institute for Nondestructive Evaluation, Seoul National University of Technology) ;
  • Park, It-Keun (Research Institute for Nondestructive Evaluation, Seoul National University of Technology) ;
  • Lee, Seung-Seok ;
  • Lee, C.J.
  • 김정석 (서울산업대학교 기계공학과) ;
  • 박태성 (서울산업대학교 기계공학과) ;
  • 박익근 (서울산업대학교 기계공학과) ;
  • 이승석 (한국표준과학연구원) ;
  • 이창준 (서울산업대학교 공동실험실습관)
  • Published : 2009.08.30

Abstract

The ultrasonic atomic force microscope(UAFM) has been developed in order to enhance the characterization technology for nano-scale surface combining ultrasonic property to atomic force microscope. This UAFM technique enables elasticity imaging due to the physical properties on the heterogeneous surface in addition to the novel topography of surface height in the nano-surface layer. In this study, the prototype UAFM system was constructed and applied to several materials, silicon deposited wafer, spherodized cold heading steel, and carbon fiber reinforced plastic specimen. Clear elastic contrast was successfully obtained using this developed prototype UAFM.

본 연구에서는 나노 표면층의 특성 평가를 위해 원자현미경에 초음파 특성을 결합하여 초음파 원자 현미경을 개발하였다. 초음파 원자 현미경은 기존의 나노 표면층에 대한 토포그래프 이미지뿐만 아니라 국부적인 이종부분으로 이루어진 표면에서의 물리적 특성차이에 의한 표면의 탄성 특성 이미지를 얻을 수 있다. 본 연구에서는 프로토타입의 UAFM 장치를 구성하고 이를 몇몇 응용분야에 적용하였다. 구축한 프로토타입의 UAFM 시스템을 이용하여 증착 실리콘 박막층과 냉간 압조용 강의 구상화 그리고 탄소 섬유 강화 복합재료의 표면에 대한 탄성 이미지를 성공적으로 얻을 수 있었다.

Keywords

References

  1. G. Binnig, C. F. Quate and Ch. Gerber, 'Atomic force microscope,' Phys. Rev. Lett., Vol. 56, pp. 930-933, (1986) https://doi.org/10.1103/PhysRevLett.56.930
  2. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, 'Tunneling through a controllable vacuum gap,' Appl. Phys. Lett., Vol. 40, pp. 178-180, (1982) https://doi.org/10.1063/1.92999
  3. F. Ohnesorge and G. Binnig, 'True atomic resolution by atomic force microscopy through repulsive and attractive forces,' Science, Vol. 260, pp. 1451-1456, (1993) https://doi.org/10.1126/science.260.5113.1451
  4. I. L. Singer, 'Friction and energy dissipation at the atomic scale: A review,' J. Vac. Sci. Technol. A, Vol. 12, pp. 2605-2616 (1994) https://doi.org/10.1116/1.579079
  5. A A Tseng, A Notargiacomo, and T. P. Chen, 'Nanofabrication by scanning probe microscope lithography: A review,' J. Vac. Sci. Technol. B, Vol. 23, pp. 877-894, (2005) https://doi.org/10.1116/1.1926293
  6. S. H. Wang, G. Xu and S. L. Tan, 'Development of a metrological atomic force microscope for nano-scale standards calibration,' Proc. of SPIE Vol. 7155, pp. 715501-1- 715501-8, (2008) https://doi.org/10.1117/12.817278
  7. H.-J. Butt, B. Cappella and M. Kappl, 'Force measurements with the atomic force microscope: Technique, interpretation and applications,' Surf. Sci. Rep., Vol. 59, pp. 1-152, (2005) https://doi.org/10.1016/j.surfrep.2005.08.003
  8. J. H. Kim and K-B. Song, 'Recent progress of nano-technology with NSOM,' Micron, Vol. 38, pp. 409-426, (2007) https://doi.org/10.1016/j.micron.2006.06.010
  9. E. Chilla, T. HesjedahI and H-J Frohlich, 'Nanoscale determination of phase velocity by scanning acoustic force microscopy,' Phys. Rev. B, Vol. 55, pp. 15852-15855, (1997) https://doi.org/10.1103/PhysRevB.55.15852
  10. U. Rabe and W. Arnold, 'Acoustic microscopy by atomic force microscopy,' Appl. Phys. Lett., Vol. 64, pp. 1493-1495, (1994) https://doi.org/10.1063/1.111869
  11. K Yamanaka and S. Nakano, 'Ultrasonic atomic force microscope with overtone excitation of cantilever,' Jpn. J. Appl. Phys., Vol. 35, pp. 3787-3792, (1996) https://doi.org/10.1143/JJAP.35.3787
  12. W. Rohrbeck and E. Chilla, 'Detection of surface acoustic waves by scanning force microscopy,' Phys. Stat. Sol. (a), Vol. 131, pp. 69-71, (1992) https://doi.org/10.1002/pssa.2211310111
  13. M. Salmeron, G. Nuebauer, A Folch, M. Tomitori, D. F. Ogletree and P. Sautet, 'Viscoelastic and electrical properties of self-assembled monolayers on gold (111) films,' Langmuir, Vol. 9, pp. 3600-3611, (1993) https://doi.org/10.1021/la00036a041
  14. S. N. Magonov, V. Elings and M. -H, Whangbo, 'Phase imaging and stiffness in tapping-mode atomic force microscopy,' Surf. Sci. Lett., Vol. 375, pp. L385-L391, (1997) https://doi.org/10.1016/S0039-6028(96)01591-9
  15. C. Miyasaka, B. R Tittmann, T. Adachi and A Yamaji, 'Theoretical approach to contrast mechanism for UAFM," PVP-2002, ASME conf., Vol. 450, pp. 63-67, (2002)
  16. Y. Martin, C. C. Williams, and H. K Wickramasinghe, 'Atomic force microscopeforce mapping and profiling on a sub 100-A scale,' J. Appl. Phys., Vol. 61, pp. 4723-4729, (1987) https://doi.org/10.1063/1.338807