Biosensor System for the Detection of Agrichemicals and Its Applications

농약 검출을 위한 바이오센서 시스템 연구 및 그 응용

  • Park, Tae-Jung (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the Biocentury, KAIST) ;
  • Yang, Min-Ho (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the Biocentury, KAIST) ;
  • Lee, Sang-Yup (BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the Biocentury, KAIST) ;
  • Kim, Soo-Hyun (Department of Mechanical Engineering, KAIST)
  • 박태정 (한국과학기술원 생물공정연구센터, 시스템 및 합성생명공학연구센터, 바이오융합연구소) ;
  • 양민호 (한국과학기술원 생물공정연구센터, 시스템 및 합성생명공학연구센터, 바이오융합연구소) ;
  • 이상엽 (한국과학기술원 생물공정연구센터, 시스템 및 합성생명공학연구센터, 바이오융합연구소) ;
  • 김수현 (한국과학기술원 기계공학과)
  • Published : 2009.06.29

Abstract

In the recent years, some organic toxic chemicals were used for obtaining high-yield productivity in agriculture. The undegraded pesticides may remain in the agricultural foods through atmosphere, water, and soil and cause public health problems to environmental resources and human beings even at very low concentrations. Small amounts of pesticides can affect a central nervous system, resulting in immunogenic diseases, infertility problems, respiratory diseases and born marrow diseases, which can lead even to death. Monitoring of the environmental pesticide is one of the important issues for the human well-being. Several kinds of biosensors have been successfully applied to the detection of agrichemical toxicity. Also, few platforms for biocide detection have been definitely developed for the degradation and reaction of pesticides. Biochip and electrochemistry experiments involve immobilizing a receptor molecule on a solid substrate surface, and monitoring its interaction with an analyze in a sample solution. Furthermore, nanotechnology can be applied to make high-throughput analyses that are smaller, faster and sensitive than conventional assays. Some nanomaterials or nanofabricated surfaces can be coupled to biomolecules and used in antibody-based assays and enzymatic methods for pesticide residues. The operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in agrichemical defection research and also describe the label-free biosensor for pesticides using various useful detection methods.

현재까지의 농약 검출용 바이오센서는 화학 센서, immunoassay, 화학 테스트 킷과 같은 다른 잘 알려진 분석 방법들과 경쟁적으로 연구되어 지고 있다. 바이오센서가 농약을 증명하는 간단하고 저렴한 방법으로 chromatography 방법들을 대체할 잠재력을 가지고 있음에도 불구하고 정확한 정량적 분석 방법이 아직도 미비하다. 안정하고 강력한 바이오센서의 발전을 위해서 유전자 조작을 이용한 효소 개량을 통해 좀 더 민감하고 반응속도가 빠른 생촉매와 특이성이 높은 항체의 개발이 요구되고 있다. 바이오센서의 안정성 개선과 transducer 표면으로부터의 빠른 신호 전달을 위해 새로운 고정화 방법이 탐구되어져야 한다. 비록 약간의 방법들이 시료의 전처리를 필요로 하지 않을 지라도 센서의 안정성은 또 다른 개념으로 접근해야 한다. 그래서 현장 적용을 위해, 보다 간편한 시료의 전처리과정 혹은 직접적인 분석 방식이 동일시되어 개선되어야 한다. 향상된 fabrication 기술을 이용한 소형화 센서 혹은 일회용 킷의 개발은 개인용 및 산업용, 의약용 등의 여러 분야에서 실시간으로 분석이 가능하게 할 것이다. 실제 샘플의 빠르고 자동화 및 소형화된 분석 시스템의 구축을 위해 장차 매우 선택적인 다중 검출 바이오센서의 설계에 더 많은 중점을 둘 필요가 있다. 앞으로 잔류농약 검출을 위한 휴대형 바이오센서의 개발과 상용화를 위해서, 무엇보다 현재의 GC, LC (혹은 GC/MS, LC/MS) 분석을 위해 이루어지고 있는 샘플 전처리 방법의 경우, 다량의 샘플로부터 유기용매 등을 이용한 추출방법으로 진행되고 있기 때문에 샘플 전처리를 간소화하고 간단한 측정방법으로 전체의 측정결과를 대변할 수 있는 방안을 구축하고 잔류농약의 법적 허용기준과 적용이 가능한 방법을 찾아내는 노력이 절실히 요구되는 상황이다.

Keywords

References

  1. Jimenez, A. M. and M. J. Navas (1997), Chemiluminescent methods in agro-chemical analysis, Crit. Rev. Anal. Chem. 27, 291-305 https://doi.org/10.1080/10408349708050588
  2. Kim, J. S. (2005), MRLs for pesticides in foods, Korea Food & Drug Administration, Seoul, Korea
  3. Lee, Y.-S., B.-H. Lee, and J.-H. Chun (1995), A study on the remaining concentration and toxicity of phosphates and carbamate insecticides by enzyme inhibition reactions in Nonsan, Chungnam, J. Kor. lnd. Eng. Chem. 37, 1755-1791
  4. Alder, L., K. Greulich, G. Kempe, and B. Vieth (2006), Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS?, Mass Spectrom. Rev. 25, 838-865 https://doi.org/10.1002/mas.20091
  5. Nunes, G. S., I. A. Toscano, and D. Barcelo (1998), Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays, Trends Anal. Chem. 17, 79-87 https://doi.org/10.1016/S0165-9936(97)00116-7
  6. Pandey, P. C., R. W. Aston, and H. H. Weetall (1995), Tetracyanoquinodimethane mediated glucose sensor based on a self-assembling alkanethiollphospholipid bilayer, Biosens. Bioelectron. 10, 669-674 https://doi.org/10.1016/0956-5663(95)96957-Z
  7. Mulchandani, A., P. Mulchandani, and W. Chen (1999), Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on inlmobilized organophosphorus hydrolase, Anal. Chem. 71, 2246-2249 https://doi.org/10.1021/ac9813179
  8. Choi, B. G., H. Park, T. J. Park, D. H. Kim, S. Y. Lee, and W. H. Hong (2009), Development of the electrochemical biosensor for organophosphate chemicals using CNT/ ionic liquid bucky gel e1ectrode, Electrochem. Commun. 11, 672-675 https://doi.org/10.1016/j.elecom.2009.01.006
  9. Hock, B., A. Dankwardt, K. Kramer, and A. Marx (1995), Immunochemical techniques : Antibody production for pesticide analysis. A review, Anal. Chim. Acta 311, 393-405 https://doi.org/10.1016/0003-2670(95)00148-S
  10. Killard, A. J., L. Micheli, K. Grennan, M. Franek, V. Kolar, D. Moscone, I. Palchetti, and M. R. Smyth (2001), Amperometric separation-free immunosensor for real-time environmental monitoring, Anal. Chim. Acta 427, 173-180 https://doi.org/10.1016/S0003-2670(00)01015-1
  11. Xu, S., A. Wu, H. Chen, Y. Xie, Y. Xu, L. Zhang, J. Li, and D. Zhang (2007), Production of a novel recombinant Drosophila melanogaster acetylcholinesterase for detection of organophosphate and carbamate insecticide residues, Biomol. Eng. 24, 253-261 https://doi.org/10.1016/j.bioeng.2006.12.002
  12. Mulchandani, A., W. Chen, P. Mu1chandani, J. Wang, and K. R. Rogers (2001), Biosensors for direct determination of organophosphate pesticides, Biosens. Bioelectron. 16, 225-230 https://doi.org/10.1016/S0956-5663(01)00126-9
  13. Kandimalla, V. K., N. S. Neeta, N. G. Karanth, M. S. Thakur, K. R. Roshini, B. E. A. Rani, A. Pasha, and N. G. K. Karanth (2004), Regeneration of ethyl parathion antibodies for repeated use in inlmunosensor: a study on dissociation of antigens from antibodies, Biosens. Bioelectron. 20, 903-906 https://doi.org/10.1016/j.bios.2004.03.027
  14. Rekha, K., M. D. Gouda, M. S. Thakur, and N. G. Karanth (2000), Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring. Biosens. Bioelectron. 15, 499-502 https://doi.org/10.1016/S0956-5663(00)00077-4
  15. Jenkina, A. L., R. Yin, and J. L. Jensen (2001), Molecularly imprinted polymer sensors for pesticide and insecticide detection in water, Analyst 126, 798-802 https://doi.org/10.1039/b008853f
  16. Mulchandani, P., W. Chen, and A Mulchandani (2001), Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. Environ. Sci, Technol. 35, 3562-2565 https://doi.org/10.1021/es001773q
  17. Trojanowicz M. (2002), Determination of pesticides using electrochemical enzymatic biosensors, Electroanalysis 14, 1311-1328 https://doi.org/10.1002/1521-4109(200211)14:19/20<1311::AID-ELAN1311>3.0.CO;2-7
  18. Marty, J. L., N. Mionetto, T. Noguer, F. Ortega, and C. Roux (1993), Enzyme sensors for the detection of pesticides. Biosens. Bioelectron. 8, 273-280 https://doi.org/10.1016/0956-5663(93)85007-B
  19. Mazzei, F., F. Botre, and C. Botre (1996), Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides, Anal. Chim. Acta 336, 67-75 https://doi.org/10.1016/S0003-2670(96)00378-9
  20. Ayyagari, M., S. Kametkar, R. Pande, K. A. Marx, J. Akkara, and D. L. Kaplan (1995), Chemiluminescencebased inhibition kinetics of alkaline phosphatase in the development of a pesticide biosensor, Biotechnol. Prog. 11, 699-703 https://doi.org/10.1021/bp00036a015
  21. Cremisini, C., A. D. Sario, J. Mela, R. Pilloton, and G. Paleshci (1995), Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor. Anal. Chim. Acta 311, 273-280 https://doi.org/10.1016/0003-2670(94)00618-V
  22. Zheng, J., C. A. Constantine, L. Zhao, V. K. Rastogi, T.-C. Cheng, J. J. DeFrank, and R. M. Leblanc (2005), Molecular interaction between organophosphorus acid anhydrolase and diisopropylfluorophosphate, Biomacromolecules 6, 1555-1560 https://doi.org/10.1021/bm049199o
  23. Everett W. R. and G. A. Rechnitz (1998), Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor, Anal. Chem. 70, 807-810 https://doi.org/10.1021/ac970958l
  24. Dave, K. I., C. E. Miller, and J. R. Wild (1993), Characterization of. organophosphorous hydrolases and the genetic manipulation of. the phosphotriesterases from pseudomonas diminuta, Chem Biol. Intract. 87, 55-68 https://doi.org/10.1016/0009-2797(93)90025-T
  25. Mitchell, K. M. (2004), Acetylcholine and choline amperometric enzymε sensors characterized in vitro and in vivo, Anal. Chem. 76, 1098-1106 https://doi.org/10.1021/ac034757v
  26. Kok, F. N. and V. Hasirci (2004), Determination of binary pesticide mixtures by an acetylcholinesterasecholineoxidase biosensor, Biosens. Bioelectron. 19, 661-665 https://doi.org/10.1016/j.bios.2003.07.002
  27. Montensinos, T., S. P. Munguia, F. Valdez, and J. L. Marty (2001), Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents, Anal. Chim. Acta 431, 231-237 https://doi.org/10.1016/S0003-2670(00)01235-6
  28. Trajkovska, S., K. Tosheska, J. J. Aaron, F. Spirovski, and Z. Zdravkovski (2005), Bioluminescence determination of enzyme activity of firefly luciferase in the presence of pesticides, Luminescence 20, 192-196 https://doi.org/10.1002/bio.820
  29. Lotti, M. (1995), Cholinesterase inhibition: complexities in interpretation, Chin. Chem. 41, 1814-1818
  30. Ellman, G. L., K. D. Courtney, V. Andres, J. R., and R. M. Featherstone (1961), A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem, Pharmacol. 7, 88-95 https://doi.org/10.1016/0006-2952(61)90145-9
  31. Jeanty B. and J. L. Marty (1994), Detection of paraoxon by continuous flow system based enzyme sensor, Biosens. Bioelectron. 13, 213-218 https://doi.org/10.1016/S0956-5663(97)00035-3
  32. la Rosa, C. F. Pariente, L. Hemandez, and E. Lorenzo (1993), Detennination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate, Anal. Chim. Acta 295, 273-282 https://doi.org/10.1016/0003-2670(94)80232-7
  33. Seki, A., F. Ortega, and J. L. Marty (1996), Enzyme sensor for the detection of herbicides inhibiting acetolactate synthase, Anal. Lett. 29, 1259-1271 https://doi.org/10.1080/00032719608001479
  34. Besombes, J., S. Cosnier, P. Labbe, and G. Reverdy (1995), A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides, Anal. Chim. Acta 311, 255-263 https://doi.org/10.1016/0003-2670(94)00686-G
  35. Perez Pita, M. T., A. J. Reviejo, F, F. J. M. de Villena, and J. M. Pingarron (1997), Amperometric selective biosensing of dimethyl- and diethyldithiocarbamates based on inhibition processes in a medium of reversed micelles, Anal. Chim. Acta 340, 89-97 https://doi.org/10.1016/S0003-2670(96)00552-1
  36. Boublik, Y., P. Saint-Aguet, A. Lougarre, M. Amaud, F. Villatte, S. Estrada-Mondaca, and D. Fournier (2002), Acetylcholinesterase engineering for detection of insecticide residues, Protein Eng. 15, 43-50 https://doi.org/10.1093/protein/15.1.43
  37. Noguer, T., A. Gradinaru, A. Cincu, and J. L. Marty (1999), A new disposable biosensor for the accurate and sensitive detection of ethylenebis (dithiocarbamate) fungicides, Anal. Lett. 32, 1723-1738 https://doi.org/10.1080/00032719908542928
  38. Noguer, T., B. Leca, G. Jeanty, and J. L. Marty (1999), Biosensors based on enzyme inhibition : detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides, Field Anal. Chem. Tech. 3, 171-178 https://doi.org/10.1002/(SICI)1520-6521(1999)3:3<171::AID-FACT4>3.0.CO;2-R
  39. Andreescu, S., A. Avramescu, C. Bala, V. Magearu, and J.-L. Marty (2002), Detection of organophosphorus insecticides with immobilized acetylcholinesterasecomparative study of two enzyme sensors, Anal Bioanal. Chem. 374, 39-45 https://doi.org/10.1007/s00216-002-1442-4
  40. Gogol, E. V., G. A. Evtugyn, J. L. Marty, H. C. Budnikov, and V. G. Winter (2000), Amperometric biosensors based on Nafion coated screen-printed electrodes for the detεrmination of cholinesterase inhibitors, Talanta 53, 379-389 https://doi.org/10.1016/S0039-9140(00)00507-5
  41. Lin, Y., F. Lu, and J. Wang (2004), Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents, Electroanalysis 16, 145-149 https://doi.org/10.1002/elan.200302933
  42. Sirvent, M. A., A. Merkoci, and S. Alegret (2001), Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology, Anal, Chim, Acta 442, 35-44 https://doi.org/10.1016/S0003-2670(01)01017-0
  43. Kindervater, R., W. Kunnecke, and R. D. Schimid (1990), Exchangeable immobillized reactor for enzyme inhibition tests in flow-injection analysis using a magnetic device. Detennination of pesticides in drinking water, Anal. Chim. Acta 234, 113-117 https://doi.org/10.1016/S0003-2670(00)83545-X
  44. Kandimalla, V. B. and H. X. Ju (2006), Binding of acetylcholinesterase to multiwall carbon nanotubecross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide, Chem. Eur. J. 12, 1074-1080 https://doi.org/10.1002/chem.200500178
  45. Bucur, B., M. Dondoi, A. Danet, and J. L. Marty (2005), Insecticide identification using a flow injection analysis system with biosensors based on various cholinesterases. Anal. Chim. Acta 539, 195-201 https://doi.org/10.1016/j.aca.2005.03.026
  46. Shao, C. Y., C. J. Howe, A. J. R. Porter, and L. A. Glover (2002), Novel cyanobacterial biosensor for detection of herbicides. Appl. Environ. Microbiol. 68, 5026-5033 https://doi.org/10.1128/AEM.68.10.5026-5033.2002
  47. Karns, J. S., M. T. Muldoon, W. W. Mulbury, M. Derbyshire, and P. C. Kearn (1987), Use of microorganisms and microbial systems in the degradation of pesticide, ACS Symp. Ser. 334, 157-170
  48. Rainina, E. I, E. N. Efremenco, S. D. Varfolomeyev, A. L. Simonian, and J. F. Wild (1996), The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins, Biosens. Bioelectron. 11, 991-1000 https://doi.org/10.1016/0956-5663(96)87658-5
  49. Cho, C. M., A. Mulchandani, and W. Chen (2004), Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos, Appl. Environ. Microbiol. 70, 4681-4685 https://doi.org/10.1128/AEM.70.8.4681-4685.2004
  50. Cho, C. M., A. Mulchandani, and W. Chen (2006), Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides, Protein Eng. Des. Sel. 19, 99-105 https://doi.org/10.1093/protein/gzj007
  51. Yang, H., P. D. Carr, S. Y. McLoughlin, J. W. Liu, I. Home, X. Qiu, C. M. J. Jeffries, R. J. Russell, J. G. Oakeshott, and D. L. Ollis (2003), Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution, Protein Eng. 16, 135-145 https://doi.org/10.1093/proeng/gzg013
  52. Irene Home, Xinghui Qiu, David L. Ollis, Robyn J. Russell, and John G. Oakeshott (2006), Functional effects of amino acid substitutions within the large binding pocket of the phosphotriεsterase OpdA from Agrobacterium sp. P230, FEMS Microbiol. Lett. 259, 187-194 https://doi.org/10.1111/j.1574-6968.2006.00262.x
  53. Hill, C. M., F. Wu, T.-C. Cheng, J. J. DeFrank, and F. M. Raushel (2000), Substrate and stereochemical specificity of the organophosphorus acid anhydrolase from Alteromonas sp. JD6.5 toward p-nitrophenyl phosphotriesters, Bioorgan. Med. Chem. Lett. 10, 1285-1288 https://doi.org/10.1016/S0960-894X(00)00213-4
  54. Neufeld, T., I. Eshkenazim E. Cohen, and J. Rishpon (2000), A micro flow injection electrochemical biosensor for organophosphorus pesticides, Biosens. Bioelectron. 15, 323-329 https://doi.org/10.1016/S0956-5663(00)00073-7
  55. Jaffrezic-Renault, N. (2001), New trends in biosensors for organophosphorus pesticides, Sensors 1, 60-74 https://doi.org/10.3390/s10100060
  56. Im, H., X.-J. Huang, B. Gu, and Y.-K. Choi (2007), A dielectric-modulated field-effect transistor for biosensing, Nat. Nanotechnol. 2, 430-434 https://doi.org/10.1038/nnano.2007.180
  57. Martinez, M. T., Y.-C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, and J. Bokor (2009), Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors, Nano Lett. 9, 530-536 https://doi.org/10.1021/nl8025604
  58. Meulenberg, E. P., W. H. Mulder, and P. G. Stocks (1995), Immunoassays for pesticides. Environ. Sci Tech. 29, 553-561 https://doi.org/10.1021/es00003a001
  59. Puchades, R. and A. Maquieira (1996), Recent developments in flow injection immunoanalysis, Crit. Rev. Anal. Chem. 26. 195-218
  60. Sawyer, L. D., B. M. McMahon, W. M. Newsome, and G. A. Parker (1990), in Pesticide and lndustrial Chemical Residues, 15th ed., AOAC : Champaign, Illinois
  61. Kroger, S., S. J. Setford, and A. P. F. Tumer (1998), Immunosensor for 2,4-dichlorophenoxyacetic acid in aqueous/organic solvent soil extracts, Anal. Chem. 70, 5047-5053 https://doi.org/10.1021/ac9805100
  62. Penalva, J., R. Puchades, and A. Maquieira (1999), Analytical properties of immunosensors working in organic media. Anal. Chem. 71, 3862-3872 https://doi.org/10.1021/ac9813641
  63. Minunni, M., P. Skladal, and M. Mascini (1994), A piezoelectric quartz crystal biosensor for atrazine, Life Chem. Rep. 11, 391-398
  64. Szekacs, A., N. Trummerb, N. Adanyi, M. Varadi, and I. Szendro (2003), Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection, Anal. Chim. Acta 487, 31-42 https://doi.org/10.1016/S0003-2670(03)00302-7
  65. Zeravik, J., T. Ruzgas, and M. Franek (2003), A highly sensitive flow-through amperometric immunosensor based on the peroxidase chip and enzyme-channeling principle, Biosens. Bioelectron. 18, 1321-1327 https://doi.org/10.1016/S0956-5663(03)00076-9
  66. Alvarez, M., A. Calle, J. Tamayo, L. M. Lechuga, A. Abad, and A. Montoya (2003), Development of nanomechanical biosensors for detection of the pesticide DDT, Biosens. Bioelectron. 18, 649-653 https://doi.org/10.1016/S0956-5663(03)00035-6
  67. Gonzalez-Martinez, M. A., S. Morais, R. Puchades, A. Maquieira, A. Abad, and A. Montoya (1997), Monoclonal antibody-based flow-through immunosensor for analysis of carbaryl, Anal. Chem. 69, 2812-2818 https://doi.org/10.1021/ac961068t
  68. Barzen, C., A. Grecht, and G. Gauglitz (2002), Optical multiple-analyte immunosensor for water pollution control. Biosens. Bioelctron. 17, 289-295 https://doi.org/10.1016/S0956-5663(01)00297-4
  69. Txchmelak, J., G. Proll, and G. Gauglitz (2004), Ultra-sensitive ful1y automatied immunoassay for detection of propanil in aqueous samples: steps of progress toward sub-nanogram per liter detection, Anal. Bioanal. Chem. 379, 1004-1012
  70. Guilbault, G. G., B. Hock, and R. Schmid (1992), A piezoelectric immunobiosensor for atrazine in drinking water. Biosnes. Bioelectron. 7, 411-419 https://doi.org/10.1016/0956-5663(92)85040-H
  71. Horacek, J. and P. Skladal (1997), Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4- dichlorophenoxyacetic acid, Anal. Chim. Acta 347, 43-50 https://doi.org/10.1016/S0003-2670(97)00125-6
  72. Steegborn, C. and P. Skladal (1997), Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution, Biosens. Bioelectron. 12, 19-27 https://doi.org/10.1016/0956-5663(96)89086-5
  73. Pribyl, J., M. Hepel, J. Halameka, and P. Sklada (2003), Development of piezoelectric immunosensors for competitive and direct determination of atrazine, Sens. Actuat. B 91, 333-341 https://doi.org/10.1016/S0925-4005(03)00107-2
  74. Dzantiev, B. B., A. V. Zherdev, M. F. Yulaev, R. A. Sitdikov, N. M. Dmitrieva, and I. Y. Moreva (1996), Electrochemical immunosensors for determination of the pesticides 2,4-dich1orophenoxyacetic and 2,4,5-tricho1orophenoxyacetic acids, Biosens. Bioelectron. 11, 179-185 https://doi.org/10.1016/0956-5663(96)83725-0
  75. Hu, S. Q., J. W. Xie, Q. H. Xu, K T. Rong, G. L. Shen, and R. Q. Yu (2003), A label-free e1ectrochemical immunosensor based on gold nanoparticles for detection of paraoxon, Talanta 61, 769-777 https://doi.org/10.1016/S0039-9140(03)00368-0
  76. Grennan, K., G. Strachan, A. J. Porter, A. J. Killard, and M. R. Smyth (2003), Atrazine ana1ysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement, Anal. Chim. Acta 500, 287-298 https://doi.org/10.1016/S0003-2670(03)00942-5
  77. Kalab, T. and P. Skladal (1995), A disposable amperometric immnosensor for 2,4-dichlorophenoxyacetic acid, Anal. Chim. Acta 304, 361-368 https://doi.org/10.1016/0003-2670(94)00641-X
  78. Dzantiev, B. B., E. V. Yazynina, A. V. Zherdev, Y. V. Plekhanova, A. N Reshetiv, S. C. Chang, and C. J. McNeil (2004), Determination of the herbicide chlorsulfuron by amperometric sensor based on separation-free bienzyme immunoassay, Sens. Actuat. B 98, 254-261 https://doi.org/10.1016/j.snb.2003.10.021
  79. Massei, F., F. Botre, G. Lorenti, G. Simonetti, F. Porcelli, G. Scibona, and C. Botre (1995), Plant tissue electrode for the determination of atrazine, Anal. Chim Acta 316, 79-82 https://doi.org/10.1016/0003-2670(95)00343-X
  80. Preuss, M. and A. H. Halt (1995), Mediated herbicide inhibition in a PET biosensor, Anal. Chem. 67, 1940-1949 https://doi.org/10.1021/ac00109a006
  81. Choi, S. S., S. H. Seo, D. G. Kang, H. J. Cha, and S. H. Yeom (2006), Enhancement of paraoxon biodegradation rate from recombinant Escherichia coli catalyst for bioremediation, 유기물자원화 14, 110-116
  82. Mulchandani, A., P. Mulchandani, I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agεnts using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode, Anal. Chem. 70, 4140-4145 https://doi.org/10.1021/ac9805201
  83. Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen (1997), Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase, Nat. Biotechnol. 15, 984-987 https://doi.org/10.1038/nbt1097-984
  84. Takayama, K., S. Suye, K. Kuroda, M. Ueda, T. Kitaguchi, K. Tsuchiyama, T. Fukuda, W. Chen, and A. Mulchandani (2006), Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae, Biotechnol. Prog. 22, 939-943 https://doi.org/10.1021/bp060107b
  85. Yang, C., N. Cai, M. Dong, H. Jiang, J. Li, C. Qiao, A. Mulchandani, and W. Chen (2007), Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates, Biotechnol. Bioeng. 99, 30-37 https://doi.org/10.1002/bit.21535
  86. Thibeau, R. J., L. V. Haverbeke, and C. W. Brown (1978), Detection of water pollutants by laser excited resonance Raman spectroscopy; pesticides & fungicides, Appl. Spectrosc. 32, 98-100 https://doi.org/10.1366/000370278774331774
  87. Skoulika, S. G., C. A. Georgiou, and M. G. Polissiou (1999), Quantitative determination of fenthion in pesticide formulations by FT -Raman spectroscopy, Appl. Spectrosc. 53, 1470-1474 https://doi.org/10.1366/0003702991945858
  88. Skoulika, S. G., C. A. Georgiou, and M. G. Polissiou (2000), Rapid quantitation analysis of organophosphorus pesticide formulations by FT-Raman spectroscopy, Internet J. Vib. Spec. 4, 3
  89. Quintas, G., S. Garrigues, and M. de la Guardia (2004), FT-Raman spectrometry determination of Malathion in pesticide formulations, Talanta 63, 345-350 https://doi.org/10.1016/j.talanta.2003.11.004
  90. Tanner, P. A. and K.-H. Leung (1996), Spectral interpretation and qualitative analysis of organophosphorus pesticides using FT-Raman & FT-IR spectroscopy, Appl. Spectrosc. 50, 565-571 https://doi.org/10.1366/0003702963905781
  91. Armenta, S., G. Quintas, S. Garrigues, and M. de la Guardia (2004), Determination of cyromazine in pesticide commercial formulations by vibrational spectrometric procedures, Anal. Chim. Acta 524, 257-264 https://doi.org/10.1016/j.aca.2004.02.063
  92. Armenta, S., S. Garrigues, and M. de la Guardia (2007), Determination of iprodione in agrochemicals by IR & Raman spεctrometry, Anal. Bioanal. Chem. 387, 2887-2894 https://doi.org/10.1007/s00216-007-1152-z
  93. Alak, A. M. and T. Vo-Dinh (1987), Surface-enhanced Raman spectrometry of organophosphorus chemical agents, Anal. Chem. 59, 2149-2153 https://doi.org/10.1021/ac00144a030
  94. Lee, D., S. Lee, G. H. Seong, J. Choo, E. K. Lee, D.-G. Gwon, and S. Lee (2006), Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced raman spectroscopy, Appl. Spectrosc. 60, 373-377 https://doi.org/10.1366/000370206776593762
  95. Soldatkin, A. P., D. V. Gorchkoh, C. Martelet, and N. Jaffrezi-Renault (1997), New enzyme potentiometric sensor for hypochlorite species detection, Sens. Actuat. B 43, 99-104 https://doi.org/10.1016/S0925-4005(97)00144-5
  96. Stoycheva, M. (2002), Electrochemical evaluation of the kinetic parameters of a heterogeneous enzyme reaction in presence of metal ions. Electroanalysis 14, 923-927 https://doi.org/10.1002/1521-4109(200207)14:13<923::AID-ELAN923>3.0.CO;2-J
  97. Nugent, P. (1992), in Emerging Strategies for Pesticide Analysis (T. Caims and J. Sherma, eds), CRC Press, Boca Raton, Florida
  98. Hill, A. S. J. V. Mei, C. Yin, B. S. Ferguson, and J. H. Skerritt (1991), Determination of the insect growth regulator methoprene in wheat grain and milling fractions using an enzyme immunoassay, J. Agric. Food Chem. 39, 1882-1886 https://doi.org/10.1021/jf00010a040
  99. King, J. W. and K. S. Nam (1996), in Residue Analysis in Food Safety (R. C. Beier and L. H. Stanker, eds), ACS Symposium Series 621, Americam Chemical Society, Washington