Functional Analysis of an Antibiotic Regulatory Gene, afsR2 in S. lividans through DNA microarray System

DNA 마이크로어레이 시스템 분석을 통한 S. lividans 유래 항생제 조절유전자 afsR2 기능 분석

  • Kim, Chang-Young (Department of Biological Engineering, Inha University) ;
  • Noh, Jun-Hee (Department of Biological Engineering, Inha University) ;
  • Lee, Han-Na (Department of Biological Engineering, Inha University) ;
  • Kim, Eung-Soo (Department of Biological Engineering, Inha University)
  • Published : 2009.06.29

Abstract

AfsR2 in Streptomyces lividans, a 63-amino acid protein with limited sequence homology to Streptomyces sigma factors, has been known for a global regulatory protein stimulating multiple antibiotic biosynthetic pathways. Although the detailed regulatory mechanism of AfsK-AfsR-AfsR2 system has been well characterized, very little information about the AfsR2-dependent down-stream regulatory genes were characterized. Recently, the null mutant of afsS in S. coelicolor (the identical ortholog of afsR2) has been characterized through DNA microarray system, revealing that afsS deletion regulated several genes involved in antibiotic biosynthesis as well as phosphate-starvation. Through comparative DNA microarray analysis of afsR2-overexpressed S. lividans, here we also identify several afsR2-dependent genes involved in phosphate starvation, morphological differentiation, and antibiotic regulation in S. lividans, confirming that the AfsR2 plays an important pleiotrophic regulatory role in Streptomyces species.

AfsR2 과발현 S. lividans TK21을 이용하여 DNA microarray를 수행하였다. 그 결과, phosphate starvation과 관련 있는 42개의 유전자들이 up-regulated 되었으며, 특히 SCO4139 (pstB, phosphate ABC transport system ATP-binding protein)와 SCO4142 (pstS, phosphate-binding protein precursor)는 afsR2가 phosphate와 같은 nutrient starvation에 적극적으로 관여한다는 것을 나타내며, SCO4228 (putative phosphate transport system regulatory protein)은 기존에 수행되었던 2D-electrophoresis 연구나 afsS null S. coelicolor를 이용한 DNA microarray 연구에서도 공통적으로 보고되었던 유전자로서 phosphate lilitation에 대한 afsR2의 효과가 지속적으로 검증되고 있음을 뜻한다. 또한 afsR2 과발현을 통해서 sigma factor인 SCO2954 (sigL)과 SCO5147 (sigE)의 발현이 유도되었으며 두 유전자의 구조적인 특징을 고려해 보았을 때 afsR2가 RNA polymerase와의 linker로서의 역할을 추측해 볼 수 있다. 뿐만 아니라 whi 관련 유전자들의 발현 또한 afsR2에 의해 증가되었다. 이는 afsR2가 단순히 2차 대사물질 생합성 조절에만 관여하는 것이 아니라 형태적 분화에 작용함으로써 최종적으로 여러 2차 대사물질의 합성을 유도한다고 말할 수 있다. 이러한 결과들을 토대로 afsR2가 기존에 항생제 생합성에만 관여하는 global regulatory 조절인자가 아닌 방선균이 stationary phase로 전환되는 시점에서 형태적 분화에 영향을 미치고 phosphate limitation stress를 줄여주는 2차 대사의 key-factor regulatory 유전자임을 알 수 있다.

Keywords

References

  1. Huang, J., C. J. Lih, K. H. Pan, and S. N. Cohen (2001), Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev. 15, 3183-3192 https://doi.org/10.1101/gad.943401
  2. Petkovic', H., J. Cullum, D. Hranueli, I. S. Hunter, N. Peric'-Concha, J. Pigac, A. Thamchaipenet, D. Vujaklija and P. F. Long (2006), Genetics of Streptomyces rimosus, theOxytetracycline Producer, Microbiol. Mol. biol. review. 70(3), 704-728 https://doi.org/10.1128/MMBR.00004-06
  3. Hutchinson, C. R. and A. L. Colombo (1999), Genetic engineering of doxorubicin production in Streptomyces peucetius, a review. J. lnd. Microbiol. Biotechnol. 23, 647-652 https://doi.org/10.1038/sj.jim.2900673
  4. Zhang, H., Y. Wang, and B. A. Pfeifer (2008), Bacterial hosts for natural product production. Mol. Pharm. 5(2), 212-225 https://doi.org/10.1021/mp7001329
  5. Rodriguez, E., Z. Hu, S. Ou, Y. Volchegursky, C. R. Hutchinson, and R. McDaniel (2003), Rapid engineering of polyketide overproduction by gene transfer to industrial1y optimized strains, J. lnd. Microbiol. Biotechnol. 30(8), 480-8 https://doi.org/10.1007/s10295-003-0045-1
  6. Rodriguez-Garcia, A, S. Barreiro, F. Santos-Beneit, A. Sola-Landa, and J. F. Martin (2007), Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a phoP mutant. Proteomics. 7, 2410-2429 https://doi.org/10.1002/pmic.200600883
  7. Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao (2004), Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays, Metab. Eng. 6, 186-196 https://doi.org/10.1016/j.ymben.2003.12.001
  8. Sevcikova B. and J. Kormanec (2004), Differential production of two antibiotics of Streptomyces, coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch. Microbiol. 181, 384-389 https://doi.org/10.1007/s00203-004-0669-1
  9. Lee Y., K. Kim, J. W. Suh, S. Rhee, and Y. Lim (2007) Binding study of AfsK, a Ser/Thr kinase from Streptomyces coelicolor A3(2) and S-adenosyl-L-methionine. FEMS Microbiol. Lett. 266, 236-240 https://doi.org/10.1111/j.1574-6968.2006.00531.x
  10. Kim E. S., H. J. Hong, C. Y. Choi, and S. N. Cohen (2001), Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of ajsR2 gene transcription. J. Bacteriol. 183, 2198-2203 https://doi.org/10.1128/JB.183.7.2198-2203.2001
  11. Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim (2005), Doxorubicin Productivity Improvement by the Recombinant Streptomyces peucetius with High-Copy Regulatory Genes Cultured in the Optimized Media Composition. J. Microbiol Biotechn. 15, 66-71
  12. Lee J, Y. Hwang, S. Kim, E. Kim, and C. Choi (2000), Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J. Biosci Bioeng. 89(6), 606-608 https://doi.org/10.1016/S1389-1723(00)80065-1
  13. Kim C. Y., H. J. Park, and E. S. Kim (2006), Functional dissεction of sigma-like domain in antibiotic regulatory gene, afsR2 in Streptomyces lividans. J. Microbiol Biotechnol. 16, 1477-1480
  14. Kim C. Y., H. J. Park, and E. S. Kim (2005), Proteomics-driven identification of putative AfsR2-target proteins stimulating antibiotic biosynthesis in Streptomyces lividans. Biotechnol. Bioprocess Eng. 10, 248-263 https://doi.org/10.1007/BF02932021
  15. Wei, L., P. J. Karthik, C. Salim, M. Sarika, G. Frank, Y. S. Kyung, D. H. Sherman, and W. S. Hu (2008), Genome-wide transcriptiome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2), BMC Genomics. 9, 56-70 https://doi.org/10.1186/1471-2164-9-56
  16. Vogtli M., P. C. Chang, and S. N. Cohen (1994), afsR2: a previously undetected gene encoding a 63-aminoacid protein that stimulates antibiotic production in Streptomyces lividans. Mol. Microbiol. 14(4), 643-653 https://doi.org/10.1111/j.1365-2958.1994.tb01303.x
  17. Bemstein J. A., A. B. Khodursky, P. H. Lin, D. Lin-Chao, and S. N. Cohen (2002), Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. U.S.A. 99, 9697-9702 https://doi.org/10.1073/pnas.112318199
  18. Jayapal K. P., W. Lian, G. Frank, D. H. Sherman, and W. S. Hu (2007), Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics. 8, 229 https://doi.org/10.1186/1471-2164-8-229
  19. Alderson G., D. A. Ritchie, C. Cappellano, R. H. Cool, N. M. Ivanova, A. S. Huddleston, C. S. Flaxman, V. Kristufek, and A. Lounes (1993), Physiology and genetics of antibiotic production and resistance. Res. Microbiol. 144(8), 665-672 https://doi.org/10.1016/0923-2508(93)90072-A
  20. Fischer R. J., S. Oehmcke, U. Meyer, M. Mix, K. Schwarz, T. Fiedler, and H. Bahl (2006), Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J. Bacteriol. 188(15), 5469-5478 https://doi.org/10.1128/JB.00491-06
  21. Diaz M., A. Esteban, J. M. Femandez-Abalos, and R. I. Santamaria (2005), The high-affinity phosphatebinding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiol. 151, 2583-2592
  22. Braibant M., P. Lefevre, L. de Wit, P. Peirs, J. Ooms, K. Huygen, A. B. Andersen, and J. Content (1996), A Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transporter homologous to the Escherichia coli Pst system. Gene. 176, 171-176 https://doi.org/10.1016/0378-1119(96)00242-9
  23. Fink D., N. Weissschuh, J. Reuther, W. Wohlleben, and A. Engels (2002), Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 46, 331-347 https://doi.org/10.1046/j.1365-2958.2002.03150.x
  24. Reuther J. and W. W ohlleben (2007), Nitrogen metabolism in streptomyces coelicolor: transcriptional and post-translational regulation. J. Mol. Microbiol. Biotechnol. 12, 139-146 https://doi.org/10.1159/000096469
  25. Mazurakova V., B. evcikova, B. Rezuchova, and J. Kormanec (2006), Cascade of sigma factors in stretomycetes: identification of a new extracytoplasmic function sigma factor sigma J that is under the control of the stress-response sigma factor sigmaH in Streptomyces coelicolor A3(2). Arch. Microbiol. 186(6), 435-446 https://doi.org/10.1007/s00203-006-0158-9
  26. Cho Y. H., E. J. Lee, B. E. Ahn, and J. H. Roe (2001), SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol. Microbiol. 42, 205-214 https://doi.org/10.1046/j.1365-2958.2001.02622.x
  27. Paget M. S., L. Chamberlin, A. Atrih, S. J. Foster, and M. J. Buttner (1999), Evidence that the extracytoplasmic function sigma factor $\sigma^E$ is required for normal cell wall structure in Streptomyces coelicolor A3(2), J. Bacteriol. 181, 204-211
  28. Kang S. H., J. Huang, H. N. Lee, Y. A. Hur, S. N. Cohen, and E. S. Kim (2007), Interspecies DNA Microarray Analysis Identifies WblA as a Pleiotropic Down- Regulator of Antibiotic Biosynthesis in Streptomyces. J. Bacteriol. 189(11), 4315-4319 https://doi.org/10.1128/JB.01789-06
  29. Shen X. L., H. J. Dong, X. P. Hou, W. J. Guan, and Y. Q. Li (2008), FtsY affects sporulation and antibiotic productionby whiH in Streptomyces coelicolor. Curr. Microbiol. 56(1), 61-65 https://doi.org/10.1007/s00284-007-9039-y
  30. Geiman D. E., T. R. Raghunand, N. Agarwal, and W. R. Bishai (2006), Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob. Agents. Chemother. 50(8), 2836-41 https://doi.org/10.1128/AAC.00295-06
  31. Kim C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim (2004), Stimulation of actinorhodin production by stretomyces lividans with a chromosomal-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14(5), 1089-1092
  32. Flardh K., K. C. Findlay, and K. F. Chater (1999), Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology 145(Pt 9), 2229-2243
  33. Femandez-Moreno M. A., A. J. Martin-Triana, E. Martinez, J. Niemi, H. M. Kieser, D. A. Hopwood, and F. Malpartida (1992), abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174(9), 2958-2967 https://doi.org/10.1128/jb.174.9.2958-2967.1992