DOI QR코드

DOI QR Code

Bubble Behavior in Centrifugal Fluidized Bed of Fine Particles

원심유동층에서 Al2O3의 기포 거동에 관한 연구

  • Rhee, Kwan-Seok (Division of Mechanical and Automotive, Kongju National University) ;
  • Kum, Sung-Min (School of Mechanical & Automotive engineering, Halla University)
  • 이관석 (공주대학교 기계자동차공학부) ;
  • 금성민 (한라대학교 기계자동차공학부)
  • Published : 2009.07.31

Abstract

The behavior of bubbles in a centrifugal fluidized bed with a 340mm inner diameter, 195mm high was observed by photographs using 10.5${\mu}m$and 21.5${\mu}m$mean diameter of $Al_2O_3$particles as bed materials at each of 400rpm, 600rpm, 800rpm, and 1000rpm number of rotations of the rotor. At these experimental ranges, the experimental results clearly proved the effect of number of rotations of the rotor on the behavior of bubbles in the centrifugal fluidized bed. As the number of rotations of the rotor increased, the gas velocity at which bubbles begin to be formed also increased but diameter of bubbles decreased. And sizes of the bubbles were relatively small.

직경 340mm, 높이 195mm의 원심유동층에서 10.5${\mu}m$와 21.5${\mu}m$의 평균직경을 갖는 $Al_2O_3$를 유동물질로 하여 400, 600, 800, 1000rpm으로 기포의 거동을 규명하고자 2중사진 촬영에 의해 유동가시화현상을 실험하였다. 실험결과, 본 실험 범위에서 원심유동층에서 기포의 거동은 회전수에 영향을 받는 것을 알 수 있었으며, 회전수가 증가함에 따라 기포가 발생하기 시작하는 속도는 증가하였으나 기포의 직경은 감소하는 것을 알 수 있었고 기포의 크기는 상대적으로 작게 나타났다.

Keywords

References

  1. Tsutsumi A., Ju W. and Yoshida K., "Reduction of NO in Diesel Engine Exhaust by Soot using a Centrifugal Fluidized Bed," Fluidization '95, pp.286, 1995.
  2. Fan L. T., Chang C. C., Yu Y. S., Takahashi T. and Tanaka Z., "Incipient Fluidization Condition for a Centrifugal Fluidized Bed," AIChE J., Vol. 31, No. 6, pp.999, 1985. https://doi.org/10.1002/aic.690310617
  3. Levy E. K., Shakespear W. J., Tabatanaie-Raissi, A. and Chen J. C., "Particle Elutriation from Centrifugal Fluidized Beds," AIChE Symposium Series, No. 205, Vol .77, pp.86, 1981.
  4. Kang H., Yamaguchi H., Ishii H. and Matsuno Y., "Bubble Behavior in Bubbling Fluidized Beds of Binary Particles," J. of Chemical Engineering of Japan, Vol. 24, No. 4, pp.525,1981.
  5. Levy E., Martin N. and Chen, J., "Minimum Fluidization and Startup of Centrifugal Fluidized Bed," Fluidization, Cambridge University Press, pp.71, 1978.
  6. Musters S. M. P. and Rietema L., "Gas-Solid Fluidization in a Centrifugal Field. The Effect of Gravity upon Bed Expansion," Power Technology, Vol. 18, pp.249, 1997. https://doi.org/10.1016/0032-5910(77)80015-6
  7. Takahashi T., Tanaka Z. and Itoshima A., "Performance of a Rotating Fluidized Bed," J. of Chemical Engineering of Japan, Vol. 17, No. 3, pp.333, 1984. https://doi.org/10.1252/jcej.17.333
  8. Makishima S. and Shirai T., Power Requirements for Agitating Air-Fluidized Beds," J. of Chemical Engineering of Japan, Vol. 2, No. 2, pp.224, 1969. https://doi.org/10.1252/jcej.2.224
  9. Nezzal A., Large J. F. and Guigon P., "Fluidization Behavior of Very Cohesive Powders under Mechanical Agitation," Fluidization Ⅷ, pp.225,1995.
  10. Nakagawa N., Furukawa J. and Sato T., "The Fine Particles Residence on a Powder Particle Fluidized Bed," J. of Chemical Engineering of Japan, Vol. 20, No. 2, pp.313, 1994.
  11. Tanaka Z., Miya T. and Takahkshi T., "Fluidization Characteristics of Centrifugal Fluidized Bed," J. of Chemical Engineering of Japan, Vol. 19, No. 4, pp.605, 1993.
  12. IjiChi K., Uemura. Y., Tanaka Y. and Hatatem., Effect of Fine Particles on Behavior of Bubbles in Gas-Solid Fluidized Bed at Elevated Temperature," J. of Chemical Engineering of Japan, Vol. 19, No. 6, pp.1143, 1993.
  13. Inukai T., Yamazaki R. and Mori S., "Fluidization of Fine Particles and Their Cohesiveness," The 2nd SCEJ Symposium on Fluidization, pp.337, 1997.