Synthesis, photoluminescence and thermal properties of laponite-X (X = Eu, Tb) phosphors

라포나이트-X(X = Eu, Tb) 형광체의 합성 및 열적 안정성과 발광특성 연구

  • Kim, Pyo-Ra (Department of Chemistry and Institute of Basic Science, DanKook University) ;
  • Son, Dong-Min (Department of Chemistry and Institute of Basic Science, DanKook University) ;
  • Lee, Han-Na (Department of Chemistry and Institute of Basic Science, DanKook University) ;
  • Kim, You-Hyuk (Department of Chemistry and Institute of Basic Science, DanKook University)
  • 김표라 (단국대학교 첨단과학대학 화학과, 기초과학 연구소) ;
  • 손동민 (단국대학교 첨단과학대학 화학과, 기초과학 연구소) ;
  • 이한나 (단국대학교 첨단과학대학 화학과, 기초과학 연구소) ;
  • 김유혁 (단국대학교 첨단과학대학 화학과, 기초과학 연구소)
  • Published : 2009.08.31

Abstract

In order to give emission functionality for laponite the laponite-X (x = Eu, Tb) phosphors were prepared by calcination of cryogels which were prepared through Na ion exchange reaction with Eu and Tb ions. Thermal stability and emission properties of new laponite-X (X = Eu, Tb) phosphors were investigated by X-ray diffractormeter and UV/VUV spectrofluorometer. The phosphors were stable around up to $600^{\circ}C$ and new crystalline phases were observed at $700^{\circ}C$. Red and green emissions of phosphors under UV/VUV excitation were also identified at $300^{\circ}C$ and $500^{\circ}C$ as emission peaks of $Eu^{3+}$ and $Tb^{3+}$, respectively.

본 연구에서는 라포나이트의 발광 기능성을 부여하기 위하여 수용액에서 라포나이트의 층간에 존재하는 Na 이온을 Eu 및 Tb 이온으로 치환하여 동결 건조 후 소성하여 라포나이트-X(X=Eu, Tb) 형광체를 제조하였다. 합성된 형광체의 열적 안정성을 조사하기 위하여 여러 온도에서 소성하여 XRD로 결정구조를 분석한 후 형광체가 $600^{\circ}C$까지 안정하고 $700^{\circ}C$ 이후에는 새로운 결정상이 형성됨을 확인할 수 있었다. 합성된 형광체의 발광 특성은 UV 및 VUV 여기 광원하에서 조사하였으며 적색 및 녹색 발광 특성은 $300^{\circ}C$$500^{\circ}C$에서 각각 $Eu^{3+}$$Tb^{3+}$에 기인하는 발광 피이크로 확인 할 수 있었다.

Keywords

References

  1. P.D. Kaviratna, T.J. Pinnavaia and P.A. Schroeder, "Dielectric properties of smectite clays", J. Phys Chem. Solids 57 (1996) 1897 https://doi.org/10.1016/S0022-3697(96)00076-5
  2. F. Lopez Arbeloa, J.M. Herran Martinez, T. Lopez Arbeloa and I. Lopez Arbeloa, "The hydrophobic effect on the adsorption of rhodamines in aqueous suspensions of smectites. The rhodamine 3B/laponite B system", Langmuir 14 (1998) 4566 https://doi.org/10.1021/la971350a
  3. C. Konn, F. Morel, E. Beyou, P. Chaumont and E. Bourgeat-Lami, "Nitroxide-mediated polymerization of styrene initiated from the surface of laponite clay platelets", Macromolecules 40 (2009) 7464 https://doi.org/10.1021/ma070283g
  4. R.C. Greaves, S.P. Bond and W.R. Mcwhinnie, "Conductivity studies on modified laponites", Polyhedron 14 (1995) 3635 https://doi.org/10.1016/0277-5387(95)00158-O
  5. P.A. Wheeler, J. Wang, J. Baker and L.J. Mathias, "Synthesis and characterization of covalently functionalized laponite clay", Chem. Mater. 17 (2005) 3012 https://doi.org/10.1021/cm050306a
  6. G. Blasse and B.C. Grabmaier, "Luminescent Materials", Springer-Verlag (1994)
  7. M.D. Lumb, "Luminescence Spectroscopy" (Academic Press, London, 1978) p. 70
  8. M. Ogawa and Y. Takizawa, "Intercalation of tris(2,2'- bipyridine) ruthenium(II) into a layered silicate, magadiite, with the aid of a crown ether", J. Phys. Chem. B 103 (1999) 5005 https://doi.org/10.1021/jp984198+
  9. S. Bachir, K. Azuma, J. Kossanyi, P. Valat and J.C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare-earth ions and lithium. Insertion of rare-earth ions into zinc oxide”, J. Lumin. 75 (1997) 35 https://doi.org/10.1016/S0022-2313(97)00093-8
  10. F.J. Avella, O.J. Sovers and C.S. Wiggins, "Rare earth cathodoluminescence in InBO3 and related orthoborates", J. Electrochem. Soc.: Solid State Science 114 (1967) 613 https://doi.org/10.1149/1.2426665