DOI QR코드

DOI QR Code

GABA Productivity in Yoghurt Fermented by Freeze Dried Culture Preparations of Lactobacillus acidophilus RMK567

Lactobacillus acidophilus RMK567의 동결건조 컬쳐로 제조한 요구르트에서 GABA 생성력

  • Published : 2009.08.31

Abstract

${\gamma}-Aminobutyric$ acid (GABA) producing lactic acid bacteria, Lactobacillus acidophilus RMK567 was cultivated in 50 L of sterilized MRS broth using a fermenter at $40^{\circ}C$ for 24 h. The cell number was increased to $10.04{\pm}0.13$ Log CFU/mL with a growth rate constant (k) of 0.454 generation/h and a generation time (g) of 2.303 h after a lapse of a lag phase (L) of 5.16 h. A total of 487 g of cell paste with 40.5% moisture was harvested with viable cell number of 12.48 Log CFU/g cell paste. The cell pastes after preparation with glycerol, glucose, and polydextrose as cryo-protectants were lyophilized under a vacuum of 84 m torr. A total of 408 g of freeze dried (FD) cell powders were mixed with a commercial strain of Streptococcus thermophilus to prepare of three types FD starter cultures with the viable cell numbers of 12.42 (FDA-GY), 12.60 (FDBGG) and 12.91 (FDC-GP) Log CFU/g. During preservation the FD cultures at -$18^{\circ}C$, the cell viability of the FD starter cultures were rapidly dropped to below 3.24% of the day of storage. No significant difference was found in the cell viabilities among three types of FD starters cultures, but significant difference (p<0.01) was found in storage periods. Yoghurts fermented through FD starter culture of L. acidophilus RMK567 were determined to contain $155.16{\pm}8.53$ ppm, $243.82{\pm}4.27$ ppm, and $198.64{\pm}23.46$ ppm of GABA, respectively. This study shows that GABA production activity of L. acidophilus RMK567 is not affected during the freeze drying process and would be available for commercial production of yoghurt containing high GABA content.

GABA 생성 젖산균으로 선발한 Lactobacillus acidophilus RMK567 균주를 멸균한 50 L의 MRS broth가 들어 있는 fermenter에 접종하여 40oC의 발효온도에서 24시간 배양 하였다. L. acidophilus RMK567 생균수는 $10.04{\pm}0.13$ Log CFU/mL이었으며, 이때 5.16시간의 유도기(L)를 거쳐 2.203시간의 세대시간(g)으로 증식하였으며, 생장률상수(k)는 0.454세대/h 이었다. 50 L의 MRS 배양액으로부터 회수한 cell paste의 총 중량은 487 g, 수분함량은 40.5%이었으며, 생균수는 12.48 Log CFU/g 이었다. Cell paste에 glycerol, glucose 및 polydextrose 등의 동결보호제를 첨가하여 $-45^{\circ}C$에서 deep frozen하고 84 mtorr의 진공 하에서 3시간 동결건조하여 총 408 g의 FD cell powder를 생산하였다. FD cell powder에 Streptococcus thermophilus를 혼합한 FD starter cultures의 수분함량은 4.25%, 3.90%, 및 4.08%이었으며, 생균수는 각각 12.42(FDA-GY), 12.60(FDB-GG)과 12.91(FDC-GP) Log CFU/g이었다. 모든 FD starter cultures는 $-18^{\circ}C$ 저장 초기부터 급속히 사멸하여 3.24% 이하의 생존률을 보였다. 각 동결보호제 처리구 간의 생균수 차이는 유의성을 보이지 않았으나, 저장기간에 따른 유의성은 p<0.01 수준에서 관찰되었다. 원유를 기초로 하는 요구르트 조제액에 MSG의 농도를 0.02%, 0.04% 및 0.05%을 첨가하고, FD starter culture로 배양한 요구르트의 GABA 함량은 각각 $155.16{\pm}8.53$ ppm, $243.82{\pm}4.27$ ppm 및 $198.64{\pm}23.46$ ppm 이었다. 이 결과는 L. acidophilus RMK567의 FD starter culture가 동결건조 공정에 의하여 GABA 생성력이 감소하지 않았으며, GABA 함량이 높은 요구르트 제조에 유용하다는 사실을 보여주는 것이었다.

Keywords

References

  1. Castro, H. P., Teixeira, P. M., and Kirby, R. (1995) Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres. Appl. Microbiol. Biotechnol. 44, 172-176 https://doi.org/10.1007/BF00164498
  2. Champgne, P., Mondou, F., Raymond, Y., and Roy, D. (1996) Effects of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Res. Int. 29, 555-562 https://doi.org/10.1016/0963-9969(95)00050-X
  3. Chang, J. S., Lee, B. S., and Kim, Y. G. (1992) Changes in ãaminobutyric acid (GABA) and the main constituents by a treatment conditions of anaerobically treated green tea leaves. Korean J. Food Sci. Technol. 24, 315-319
  4. Sandine, W. E. (1996) Commercial Production of Dairy Starter Cultures, In: Dairy Starter Cultures. Cogan, T. M. and J.-P. Accolas, (eds.), VCH Publishers, Inc., NY, pp. 191-197
  5. Conrad, P. B., Miller, D. P., Cielenski, P. R., and de Pablo, J. J. (2000) Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiol. 41, 17-24 https://doi.org/10.1006/cryo.2000.2260
  6. Espina, F. and Packard, V. S. (1979) Survival of Lactobacillus acidophilus in a spray-drying process. J. Food Prot. 42, 149-152
  7. Fernandez, M., M. L., de Valdez G. F., and Anibai, D., E. (2001) Effects of lipid composition on the stability cellular membranes during freeze-thawing of Lactobacillus acidophilus grown at different temperatures. Arch. Biochem. Biophys. 388, 179-184 https://doi.org/10.1006/abbi.2001.2274
  8. Hayakaya, K., Ueno, Y., Kawamura, S., Taniguchi, R., and Oda, K. (1997) Production of $\gamma$-aminobutyric acid by lactic acid bacteria. Sebutsu Kogaku. 75, 239-244
  9. Higl, B., Kurtmann, L., Carlsen, C. U., Ratjen, J., Forst, P., Skibsted, L. H., Kulozik, U., and Risbo, J. (2007) Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freezedried in a lactose matrix. Biotechol. Prog. 23, 794-800 https://doi.org/10.1021/bp070089d
  10. Higuchi, T., Harashi, H., and Abe, K. (1997) Exchange of glutamate and $\gamma$-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 179, 3362-3364
  11. Imm, J. Y. (2007) Effect of milk peptide on bone metabolism. Proceed. 64th Symposium. Korean Soc. of Dairy Sci. and Technol., Seoul. Korea, pp. 41-47
  12. Kim, W. S., Khunajakr, N., and Dunn, N. W. (1998) Effects of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis. Cryobiol. 37, 86-91 https://doi.org/10.1006/cryo.1998.2104
  13. King, V. A. E. and Su, J. T. (1993) Dehydration of Lactobacillus acidophilus. Process Biochem. 28, 47-52 https://doi.org/10.1016/0032-9592(94)80035-9
  14. King, V. A. E. and Lin, H. J. (1995) Studies on the effects of protectants on Lactobacillus acidophilus strain dehydrated under controlled low-temperature vacuum dehydration and freeze-drying by using response surface methodology. J. Sci. Food Agric. 86, 191-196
  15. Kurtmann, L., Carisen, C. U., Risbo, J., and Skibsted, L. H. (2009) Storage ability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiol. 58, 175-180 https://doi.org/10.1016/j.cryobiol.2008.12.001
  16. Lim, S. D., Kim, K. S., and Do, J. R. (2009) Physiological characteristics and GABA production of Lactobacillus acidophilus RMK567 isolated from raw milk. Korean J. Food Sci. Ani. Resour. 29, 15-23 https://doi.org/10.5851/kosfa.2009.29.1.15
  17. Linders, L. J. M., de Jong, G. I. W., Meerdink, G, and Vantriet, K. (1997) Carbohydrates and the dehydration inactivation of Lactobacillus plantarum: The role of moisture distribution and water activity. J. Food Eng. 31(2), 237-250 https://doi.org/10.1016/S0260-8774(96)00077-5
  18. Lorca, G. L. and de Valdez G. F. (1999) The effect of suboptimal growth and growth phase on resistance of Lactobacil lus acidophilus to environmental stress. Cryobiol. 39, 144-149 https://doi.org/10.1006/cryo.1999.2193
  19. Oh, S. H., Lee, I. T., Park, K. B., and Kim, B. J. (2002) Changes in the levels of water soluble protein and free amino acids in brown rice germinated in a chitosan/glutamic acid solution. Korean J. Biotechnol. Bioeng. 6, 515-519
  20. Oh, S. H. and Oh, C. H. (2003) Brown rice extracts with enhanced levels of GABA stimulate immune cells. Food Sci. Biotechnol. 12, 248-252
  21. Oldenhof, H., Wolkers, W. F., Fonseca, F., Passot, S. P., and Marin, M. (2005) Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: An in situ Fourier transform infrared spectroscopy study. Biotechnol. Prog. 21, 885-892 https://doi.org/10.1021/bp049559j
  22. Omori, M., Yano, T., Okamoto, J., Tsushida, T., Murai, T., and Higuchi, M. (1987) Effects of anaerobically treated tea (gabaron tea) on blood pressure of spontaneously hypertensive rats. Nippon Nogeiagaku Kaishi. 62, 1449-1451
  23. Park, K. B. and Oh, S. H. (2005) Production and characterization of GABA rice yogurt. Food Sci. Biotechnol. 14, 518-522
  24. Park, K. B. and Oh, S. H. (2006) Isolation and characterization of Lactobacillus buchnri strains with high $\gamma$-aminobutyric acid producing capacity from naturally aged cheese. Food Sci Biotechnol. 15, 86-90
  25. Santivarankna, C., Kulozik, U., and Foerst, P (2007) Alternative drying process for the industrial preservation of lactic acid bacteria cultures. Biotechnol. Prog. 23, 302-315 https://doi.org/10.1021/bp060268f
  26. Santivarankna, C., Kulozik, U., and Foerst, P. (2008) Inactivation mechanisms of lactic acid starter culture preserved by drying processes. J. Appl. Microbiol. 105, 1-13 https://doi.org/10.1111/j.1365-2672.2008.03744.x
  27. SAS (1996) SAS/STAT Software for PC. Release 6.11, SAS Institute Inc., Cary, NA. USA
  28. Schales, O., Mims, V., and Schales, S. S. (1946) Glutamic acid decarboxylase of higher plants. Arch. Biochem. 10, 455-465
  29. Schweigart, F. (1971) The drying of lactic acid bacteria cultures for Mahewu production. Lebensm.-Wiss. Technol., 4, 20-23
  30. Shin J. G. (2003) Physiological properties of lactic acid bacteria exposed to low growth temperature. Ph.D. thesis, Seoul National University, Suwon, Korea
  31. Silva, J., Carvalho, A. S., Ferreira, R., Vitorino, R., Amado, F., Domingues, P., Teixeira, P., and Gibbs, P. A. (2005) Effect of the pH of growth on the survival of Lactobacillus delbrueckii subsp. bulgaricus to stress conditions during spraydrying. J. Appl. Microbiol. 98, 775-782 https://doi.org/10.1111/j.1365-2672.2004.02516.x
  32. Stanton, H. C. (1963) Mode of action of gamma-aminobutyric acid on the cardiovascular system. Arch. Int. Phamacodyn. 143, 195-200
  33. Tsvetkov, T. and Brankova, R. (1983) Viability of micrococci and lactobacilli upon freezing and freeze-drying in the presence of different protectants. Cryobiol. 20(3), 318-323 https://doi.org/10.1016/0011-2240(83)90020-2
  34. Yu, K. H., Kwon I. K., and Kim, G. Y. (2005a) Effects of suboptimal temperature incubation on the resistance of Lactobacillus acidophilus CT 01 to storage and drying. Korean J.Food Sci.Ani. Resour. 25, 92-97
  35. Yu, K. H., Kang S. N., and Park S. Y. (2005b) Physiochemical characteristics of Lactobacillus acidophilus KH-1 isolated from the feces of a breast-fed infant. J. Food Sci. Nutr. 10, 333-339 https://doi.org/10.3746/jfn.2005.10.4.333
  36. van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., and Maguin, E. (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82, 187-216 https://doi.org/10.1023/A:1020631532202
  37. Zhang, G. and Bown, A. W. (1997) The rapid determination of $\gamma$-aminobutyric acid. Phytochem. 446, 1007-1009
  38. 茅原 紘 (2002) GABAの機能解明と新素材開發の可能性. Japan Food Science 41, 39-43

Cited by

  1. Human intestinal microbiota: Role in development and functioning of the nervous system vol.86, pp.1, 2017, https://doi.org/10.1134/S0026261717010040
  2. Optimization of γ-Aminobutyric Acid Production Using Lactobacillus brevis spp. in Darae Sap vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.214
  3. γ-Aminobutyric acid production by culturable bacteria from the human intestine vol.113, pp.2, 2012, https://doi.org/10.1111/j.1365-2672.2012.05344.x
  4. 국내산 쌀보리 맥강을 이용한 glutamate로부터 GABA 생산 vol.63, pp.1, 2009, https://doi.org/10.7740/kjcs.2018.63.1.035
  5. 가바와 비당체 이소플라본이 증가된 Lactobacillus brevis 발효 콩-분말 두유의 생리활성 증진 효과 vol.61, pp.3, 2009, https://doi.org/10.3839/jabc.2018.036