DOI QR코드

DOI QR Code

Synthesis of Graphene on Ni/SiO2/Si Substrate by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition

유도결합 플라즈마 화학기상증착법을 이용한 Ni/SiO2/Si 기판에서 그라핀 제조

  • Park, Young-Soo (Department of Materials Science & Engineering, Chungnam National University) ;
  • Huh, Hoon-Hoe (Department of Materials Science & Engineering, Chungnam National University) ;
  • Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
  • 박영수 (충남대학교 공과대학 재료공학과) ;
  • 허훈회 (충남대학교 공과대학 재료공학과) ;
  • 김의태 (충남대학교 공과대학 재료공학과)
  • Published : 2009.10.27

Abstract

Graphene has been effectively synthesized on Ni/SiO$_2$/Si substrates with CH$_4$ (1 SCCM) diluted in Ar/H$_2$(10%) (99 SCCM) by using an inductively-coupled plasma-enhanced chemical vapor deposition. Graphene was formed on the entire surface of the 500 nm thick Ni substrate even at 700 $^{\circ}C$, although CH$_4$ and Ar/H$_2$ gas were supplied under plasma of 600 W for 1 second. The Raman spectrum showed typical graphene features with D, G, and 2D peaks at 1356, 1584, and 2710 cm$^{-1}$, respectively. With increase of growth temperature to 900 $^{\circ}C$, the ratios of the D band intensity to the G band intensity and the 2D band intensity to the G band intensity were increased and decreased, respectively. The results were strongly correlated to a rougher and coarser Ni surface due to the enhanced recrystallization process at higher temperatures. In contrast, highquality graphene was synthesized at 1000 $^{\circ}C$ on smooth and large Ni grains, which were formed by decreasing Ni deposition thickness to 300 nm.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. U.S.A., 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, 438, 197 (2005). https://doi.org/10.1038/nature04233
  4. Y. B. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  5. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Choi and B. H. Hong, Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  6. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon and R. C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006). https://doi.org/10.1021/ja060680r
  7. C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghrd and K. Kern, Nano Lett., 7, 3499 (2007). https://doi.org/10.1021/nl072090c
  8. G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First and J. A. Stroscio, Science, 317, 219 (2007). https://doi.org/10.1126/science.1142882
  9. C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger and W. A. D. Heer, Appl. Phys. Lett., 92, 011914 (2008). https://doi.org/10.1063/1.2828975
  10. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  11. J. Kong, A. M. Cassell and H. Dai, Chem Phys. Lett., 292, 567 (1998). https://doi.org/10.1016/S0009-2614(98)00745-3
  12. J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos and B. C. Holloway, Carbon, 42, 2867 (2004). https://doi.org/10.1016/j.carbon.2004.06.035
  13. G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wu, I. Bello, C. S. Lee and S. T. Lee, Chem. Phys. Lett., 467, 361 (2009). https://doi.org/10.1016/j.cplett.2008.11.059
  14. A. Dato, V. Radmilovic, Z. Lee, J. Phillips and M. Frenklach, Nano Lett., 8, 2012 (2008). https://doi.org/10.1021/nl8011566
  15. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

Cited by

  1. Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation vol.22, pp.3, 2012, https://doi.org/10.3740/MRSK.2012.22.3.130
  2. Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates vol.24, pp.12, 2014, https://doi.org/10.3740/MRSK.2014.24.12.694