Preparation of Antibacterial Nanofibrous PMMA Nonwoven Fabrics

항균성 PMMA 나노섬유 부직포의 제조

  • Kim, Chang-Nam (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Xing, Zhi-Cai (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Baek, Jin-Young (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Bae, Hyun-Su (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Kang, Inn-Kyu (Department of Polymer Science and Engineering, Kyungpook National University)
  • 김창남 (경북대학교 고분자공학과) ;
  • 싱즐챠이 (경북대학교 고분자공학과) ;
  • 백진영 (경북대학교 고분자공학과) ;
  • 배현수 (경북대학교 고분자공학과) ;
  • 강인규 (경북대학교 고분자공학과)
  • Published : 2009.09.25

Abstract

In this study, electro spinning conditions for PMMA were studied. Namely, the ratio of DMF and THF and its maximum concentration were examined. Conductivity of the polymer solution containing silver nanoparticles and its effect on fiber diameter were also studied. As the results, the maximum concentration for the electro spinning of PMMA was found at 18 wt%, and the ratio of DMF/THF was 7:3. The diameter of nanofibers obtained was 100-400 nm when the PMMA solution containing 1000 ppm silver was electrospun. It was found, from TEM results, that silver nanoparticles were distributed on the edge of fibers and the resulting nanofiber mats showed a good antibacterial activity.

본 연구에서는 PMMA의 전기 방사 조건을 자세히 조사하였다. 즉, DMF 및 THF를 용매로 하여 최적의 혼합비 및 농도를 조사하였다. 또한, 은을 첨가했을 때 용액의 전도성 및 섬유 직경에 대해 검토하였고, 얻어진 나노섬유 부직포의 항균성을 조사하였다. 그 결과 DMF와 THF가 7:3이며 18 wt%일 때 섬유형성능이 우수하였고, 은을 1000ppm 넣어 전기방사하였을 때 섬유 직경은 100-400 nm 이었다. 투과형 전자현미경으로 관찰한 결과 은 나노입자는 섬유의 테두리에 분포되어 있었으며, 이들은 그램 양성균 및 그램 음성균에 대해 높은 항균성을 나타내었다.

Keywords

References

  1. M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Polymer, 43, 3303 (2002) https://doi.org/10.1016/S0032-3861(02)00136-2
  2. S. K. Lim, S. K Lee, S. H. Hwang, and H. Y Kim, Macromol. Mater. Eng., 291, 1265 (2006) https://doi.org/10.1002/mame.200600264
  3. J. X. Li, J. Wang, L. R. Shenm, Z. J. Xum, P. Li, G. J. Wan, and N. Huang, Surf. Coat. Technol., 201, 8155 (2007) https://doi.org/10.1016/j.surfcoat.2006.02.069
  4. M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv., 27, 76 (2009) https://doi.org/10.1016/j.biotechadv.2008.09.002
  5. W. C. Cecil, M. P. Charles, and W. K. Paul, J. AWWA, 54, 208 (1962)
  6. L. W. Richard, J. AWWA, 55, 881 (1963)
  7. B. T. Obert and P. G. Charles, CRC Crt. Rev. Environ. Cont., 18, 295 (1989) https://doi.org/10.1080/10643388909388351
  8. R. Pedazhur, D. Katzenelson, N. Barnea, O. Lev, H. I. Shuval, B. Fattal, and S. Ulitzur, Water Sci. Technol., 42, 293 (2000)
  9. X. Lu, Y. Zhao, C. Wang, and Y. Wei, Macromol. Rapid. Commun., 26, 1325, (2005) https://doi.org/10.1002/marc.200500300
  10. S. Kedem, J. Schmidt, Y. Paz, and Y. Cohen, Langmuir, 21, 5600 (2005) https://doi.org/10.1021/la0502443
  11. Q. F. Wei, H. Ye, D. Y. Hou, H. B. Wang, and W. D. Gao, J. Appl. Polym. Sci., 99, 2384 (2006) https://doi.org/10.1002/app.22454
  12. X. Y. Xu, Q. B. Yang, Y. Z. Wang, H. J. Yu, X. S. Chen, and X. B. Jing, Eur. Polym. J., 42, 2081 (2006) https://doi.org/10.1016/j.eurpolymj.2006.03.032
  13. W. K. Son, J. H. Youk, and W. H. Park, Carbohyd. Polym., 65, 430 (2006) https://doi.org/10.1016/j.carbpol.2006.01.037
  14. H. K. Lee, E. H. Jeong, C. K. Baek, and J. H. Youk, Mater. Lett., 59, 2977 (2005) https://doi.org/10.1016/j.matlet.2005.05.005
  15. Q. B. Yang, D. M. Li, Y. L. Hong, Z. Y. Li, C. Wang, S. L. Qiu, and Y. Wei, Synth. Met., 137, 973 (2003) https://doi.org/10.1016/S0379-6779(02)00963-3
  16. C. H. Hong, H. S. Kim, H. H. Park, Y. H. Kim, S. B. Kim, and T. W Hwang, Polymer(Korea), 30, 402 (2006)
  17. S. J. Park, B. J. Kim, and J. M. Rhee, Polymer(Korea), 27, 235 (2003)
  18. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Appl. Phys. Lett., 78, 1149 (2001) https://doi.org/10.1063/1.1345798