Suspension Polymerization with Hydrophobic Silica as a Stabilizer III. Poly(butyl methacrylate) Composite Particles Containing Carbon Black

소수성 실리카를 안정제로 하는 현탁중합 III. 카본블랙을 함유하는 폴리부틸메타크릴레이트 복합체 입자의 합성

  • Moon, Ji-Yeon (Department of Polymer Engineering, University of Suwon) ;
  • Park, Moon-Soo (Department of Polymer Engineering, University of Suwon)
  • 문지연 (수원대학교 신소재공학과) ;
  • 박문수 (수원대학교 신소재공학과)
  • Published : 2009.09.25

Abstract

Suspension polymerization with hydrophobic silica as a stabilizer and AIBN as an initiator was conducted to synthesize PBMA particles and PBMA composite particles containing carbon black. Surface modification of silica particles by controlling pH revealed that 90% of them functioned as stabilizer and 10% were incorporated into PBMA particles. While stabilizer concentration had no impact on reaction kinetics and particle diameter, an increase in stabilizer concentration displayed an increase in molecular weights when it exceeded 1.67 wt%. An increase in initiator concentration and reaction temperature decreased molecular weights in close agreement with the theoretical equation. An increase in carbon black concentration from 1 to 7 wt%, relative to the monomer, showed a progressive decrease in reaction conversion. As carbon black was increased from 3 to 5 wt%, glass transition showed a $4^{\circ}C$ increase. The presence of carbon black was confirmed by TEM while its concentration was measured by TGA.

소수성 실리카를 안정제로 AIBN을 개시제로 하는 현탁중합법으로 PBMA 입자 및 카본블랙을 함유하는 PBMA 복합체 입자를 합성하였다. pH를 이용하여 실리카입자를 표면개질하여 안정제로 선택한 반응에서 사용한 실리카의 90%는 안정제로, 10%는 PBMA 입자의 내부에 위치하는 것으로 규명되었다. 반응속도와 입경은 안정제의 농도에 무관한 것으로 관찰되었으나, 수평균 및 중량평균분자량은 안정제의 농도가 1.67 wt%를 초과하면서 증가하는 현상을 나타내었다. 개시제의 농도 증가와 반응온도의 상승에 따라 분자량은 이론식에 거의 일치하는 형태로 감소하였다. 카본블랙을 단량체에 대하여 1, 3, 5 및 7 wt% 유입하는 경우 반응전환율은 단계적으로 감소하였으며 유리전이온도는 카본블랙의 농도가 단량체에 대하여 3 wt%에서 5 wt%로 증가하는 경우 약 $4^{\circ}C$ 상승하였다. 투과전자현미경(TEM)을 이용하여 입자의 내부에 위치하는 카본블랙을 확인하였으며, 열중량분석법(TGA)으로 카본블랙의 농도를 측정하였다.

Keywords

References

  1. D. Yu, J. H. An, J. Bae, Y. Lee, S. Ahn, S. Kang, and K. Suh, J. Appl. Polym. Sci., 92, 2970 (2004) https://doi.org/10.1002/app.20310
  2. C. Lee, Y. Chou, and W. Chiu, J. Polym. Sci. Part A: Polym. Chem., 45, 3062 (2007) https://doi.org/10.1002/pola.22062
  3. F. Montagne, O. Mondain-Monval, C. Pichot, and A. Elaissari, J. Polym. Sci. Part A: Polym. Chem., 44, 2642 (2006) https://doi.org/10.1002/pola.21391
  4. J. Zhou, S. Zhang, X. Qiao, X. Li, and L. Wu, J. Polym. Sci. Part A: Polym. Chem., 44, 3202 (2006) https://doi.org/10.1002/pola.21434
  5. R. Moraes, A. M. Santos, P. C. Oliveira, F. C. T. Souza, M. Amaral, T. S. Valera, and N. R. Demarquette, Macromol. Symp., 245, 106 (2006) https://doi.org/10.1002/masy.200651314
  6. J. Luiz-Xavier, A. Guyot, and E. Bourgeat-Lami, J. Colloid Interf. Sci., 250, 82 (2002) https://doi.org/10.1006/jcis.2002.8310
  7. M. S. Kim, S. K. Kim, J. Y. Lee, S. H. Cho, K. Lee, J. Kim, and S. Lee, Macromol. Res., 16, 178 (2008) https://doi.org/10.1007/BF03218848
  8. I. Noda, T. Kamoto, and M. Yamada, Chem. Mater., 12, 1708 (2000)
  9. A. J. Paine, J. Polym. Sci. Part A: Polym. Chem., 28, 2485 (1990) https://doi.org/10.1002/pola.1990.080280921
  10. E. Shen, E. D. Sudol, and M. S. El-Aasser, J. Polym. Sci. Part A: Polym. Chem., 31, 1393 (1993) https://doi.org/10.1002/pola.1993.080310606
  11. K. Takahashi, S. Miyamori, H. Uyama, and S. Kobayashi, J. Polym. Sci. Part A: Polym. Chem., 34, 175 (1996) https://doi.org/10.1002/(SICI)1099-0518(19960130)34:2<175::AID-POLA3>3.0.CO;2-T
  12. E. Bourgeat-Lami and J. Lang, J. Colloid Interf. Sci., 197, 293 (1998) https://doi.org/10.1006/jcis.1997.5265
  13. E. Bourgeat-Lami and J. Lang, J. Colloid Interf. Sci., 210, 281 (1999) https://doi.org/10.1006/jcis.1998.5939
  14. S. Han, K. Shin, K. Suh, and J. Ryu, Macromol. Res., 16, 399 (2008) https://doi.org/10.1007/BF03218536
  15. D. Yu and J. H. An, Polymer, 45, 2004 (2004)
  16. R. Olayo, E. Garcia, B. Garcia-Corichi, L. Sanchez-Vazquez, and J. Alvarez, J. Appl. Polym. Sci., 67, 71 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<71::AID-APP8>3.0.CO;2-L
  17. N. Sawatari, M. Fukuda, Y. Taguchi, and M. Tanaka, J. Chem. Eng. Japan, 37, 731 (2004) https://doi.org/10.1252/jcej.37.731
  18. S. S. Kim, T. S. Park, B. C. Shin, and Y. B. Kim, J. Appl. Polym. Sci., 97, 2340 (2005) https://doi.org/10.1002/app.21696
  19. R. Murakami, H. Hachisako, K. Yamada, and Y. Motozato, Polym. J., 25, 205 (1993) https://doi.org/10.1295/polymj.25.205
  20. J. Kim, J. Shim, J. Bae, S. Han, H. Kim, I. Chang, H. Kand, and K. Suh, Colloid Polym. Sci., 280, 584 (2002)
  21. J. Yeum and Y. Deng, Colloid Polym. Sci., 283, 1172 (2005) https://doi.org/10.1007/s00396-005-1300-y
  22. M. Park, Polymer(Korea), 30, 498 (2006)
  23. X. Xu and F. Chen, J. Appl. Polym. Sci., 92, 3080 (2004) https://doi.org/10.1002/app.20324
  24. Mitsubishi Carbon Black catalogue, Mitsubishi Chemical (2005)
  25. M. Park, Polymer(Korea), 30, 505 (2006)
  26. Introduction of Aerosil Products, Nippon Aerosil Co., Ltd. (2005)
  27. R. K. Iler, The Chemistry of Silica, John Wiley & Sons, New York, p.60 (1978).
  28. G. Odian, Principles of Polymerization, 3rd ed., Wiley Interscience, New York, p.302 (1991)
  29. B. Ray and B. M. Mandal, J. Polym. Sci. Part A: Polym. Chem., 37, 493 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990215)37:4<493::AID-POLA13>3.0.CO;2-Y
  30. J. Brandrup and E. Immergut, Polymer Handbook, 3rd ed., John Wiley & Sons, New York, 1989
  31. H. Mark, N. Bikales, C. Overberger, and G. Menges, Encyclopedia of Polym. Sci. & Eng., 2nd ed., John Wiley & Sons, New York, Vol. 15, p. 560 (1989)