Characterization of a 27 kDa Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH51 Isolated from Cheonggukjang

  • Kim, Gyoung-Min (Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University) ;
  • Lee, Ae-Ran (Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University) ;
  • Lee, Kang-Wook (Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University) ;
  • Park, Ae-Yong (Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University) ;
  • Chun, Ji-Yeon (Department of Food Science and Technology, Sunchon National University) ;
  • Cha, Jae-Ho (Department of Microbiology, Pusan National University) ;
  • Song, Young-Sun (School of Food and Life Science, Inje University) ;
  • Kim, Jeong-Hwan (Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University)
  • Published : 2009.09.30

Abstract

Bacillus amyloliquefancies CH51 isolated from cheonggukjang, a traditional Korean fermented soy food, has strong fibrinolytic activity and produces several fibrinolytic enzymes. Among four different growth media, tryptic soy broth was the best in terms of supporting cell growth and fibrinolytic activity of this strain. A protein with fibrinolytic activity was partially purified from the culture supernatant by CM-Sephadex and Phenyl Sepharose column chromatographies. Tandem mass spectrometric analysis showed that this protein is a homolog of AprE from B. subtilis and it was accordingly named AprE51. The optimum pH and temperature for partially purified AprE51 activity were 6.0 and $45^{\circ}C$, respectively. A gene encoding AprE51, aprE51, was cloned from B. amyloliquefaciens CH51 genomic DNA. The aprE51 gene was overexpressed in heterologous B. subtilis strains deficient in fibrinolytic activity using an E. coli-Bacillus shuttle vector, pHY300PLK.

Keywords

References

  1. Astrup, T. and S. Mullertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  2. Bradford, M. M. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Choi, N.-S., D.-M. Chung, C. R. Ryu, K.-S. Yoon, P. J. Maeng, and S.-H. Kim. 2006. Identification of three extracellular proteases from Bacillus subtilis KCTC 3014. J. Microbiol. Biotechnol. 16: 457-464
  4. Choi, N.-S., S.-K. Ju, T. Y. Lee, K.-S. Yoon, K.-T. Chang, P. J. Maeng, and S.-H. Kim. 2005. Miniscale identification and characterization of subtilisins from Bacillus sp. strains. J. Microbiol. Biotechnol. 15: 537-543
  5. Choi, N.-S., K.-T. Chang, P. J. Maeng, and S.-H. Kim. 2004. Cloning, expression, and fibrin (ogen)olytic properties of a subtilisin DJ-4 gene from Bacillus sp. DJ-4. FEMS Microbiol. Lett. 236: 325-331 https://doi.org/10.1111/j.1574-6968.2004.tb09665.x
  6. Choi, N. S. and S. H. Kim. 2001. The effect of sodium chloride on the serine-type fibrinolytic enzymes and the thermostability of extracellular protease from Bacillus amyloliquefaciens DJ-4. J. Biochem. Mol. Biol. 34: 134-138
  7. Coligan, J. E., B. M. Dunn, D. W. Speicher, and P. T. Wingfield. (eds.) 2003. Short Protocols in Protein Science, pp. 3-31-3-32. Wiley
  8. Jang, J. S., D. O. Kang, M. J. Chun, and S. M. Byun. 1992. Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem. Biophys. Res. Commun. 184: 277-282 https://doi.org/10.1016/0006-291X(92)91189-W
  9. Jeong, S. J., G. H. Kwon, J. Chun, J. S. Kim, C. S. Park, D. Y. Kwon, and J. H. Kim. 2007. Cloning of fibrinolytic enzyme gene from Bacillus subtilis isolated from Cheonggukjang and its expression in protease-deficient Bacillus subtilis strains. J. Microbiol. Biotechnol. 17: 1018-1023
  10. Kim, S. H. and N. S. Choi. 1999. Electrophoretic analysis of protease inhibitors in fibrin zymography. Anal. Biochem. 270: 179-181 https://doi.org/10.1006/abio.1999.4080
  11. Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62: 2482-2488
  12. Kwon, G.-H., H.-A. Lee, J.-Y. Park, J. S. Kim, J. Lim, C.-S. Park, D. Y. Kwon, and J. H. Kim. 2009. Development of a RAPD-PCR method for identification of Bacillus species isolated from Chunggukjang. Int. J. Food Microbiol. 129: 282- 287 https://doi.org/10.1016/j.ijfoodmicro.2008.12.013
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685 https://doi.org/10.1038/227680a0
  14. Lantz, M. S. and P. Ciborowski. 1994. Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol. 235: 563-594 https://doi.org/10.1016/0076-6879(94)35171-6
  15. Lee, J.-O., S.-D. Ha, A.-J. Kim, C.-S. Yuh, I.-S. Bang, and S.- H. Park. 2005. Industrial application and physiological functions of Chungkukjang. Food Sci. Indus. 38: 69-78
  16. Nakamura, H., H. Takagi, and M. Inouye. 1987. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J. Biol. Chem. 262: 7859-7864
  17. Nakamura, T., Y. Tamagata, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (Natto). Biosci. Biotech. Biochem. 56: 1869-1871 https://doi.org/10.1271/bbb.56.1869
  18. Peng, Y., Q. Huang, R. H. Zhang, and Y. Z. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. part B 134: 45-52 https://doi.org/10.1016/S1096-4959(02)00183-5
  19. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  20. Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111 https://doi.org/10.1007/BF01956052
  21. Wu, X. C., W. Lee, L. Tran, and S. L. Wong. 1991. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173: 4952- 4958