DOI QR코드

DOI QR Code

Evaluation of Modified Soil-Plant-Atmosphere Model (mSPA) to Simulate Net Ecosystem Carbon Exchange Over a Deciduous Forest at Gwangneung in 2006

2006년 광릉 활엽수림에서 순 생태계 탄소 교환량의 모의에 대한 modified Soil-Plant-Atmosphere (mSPA) 모델의 평가

  • Lee, Young-Hee (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Lim, Hee-Jeong (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • 이영희 (경북대학교 천문대기과학과) ;
  • 임희정 (경북대학교 천문대기과학과)
  • Published : 2009.09.30

Abstract

We evaluated modified Soil-Plant-Atmosphere model's performance to simulate the seasonal variation of net ecosystem exchange (NEE) of carbon and examined the critical controlling mechanism on carbon exchange using the model over a deciduous forest at Gwangnung in 2006. The modified Soil-Plant-Atmosphere (mSPA) model was calibrated to capture the mean NEE during the daytime (1000-1400 LST) and used to simulate gross primary productivity (GPP). Ecosystem respiration ($R_e$) has been estimated using an empirical formula developed at this site. The simulation results indicated that the daytime mean stomatal conductance was highly correlated with daily insolation in the summer. Low stomatal conductance in high insolation occurred on the days with low temperature rather than with high vapor pressure deficit. It suggests that the forest rarely experienced water stress in the summer of 2006. The model captured the observed bimodal seasonal variation with a mid-season depression of carbon uptake. The model estimates of annual GPP, $R_e$ and NEE were $964\;gC\;m^{-2}\;yr^{-1}$, $733\;gC\;m^{-2}\;yr^{-1}$, and $-231\;gCm\;^{-2}\;yr^{-1}$, respectively. Compared to the observed annual NEE, the modeled estimates showed more carbon uptake by about $140\;gC\;m^{-2}\;yr^{-1}$. The uncertainty of the estimate of annual NEE in a complex terrain is discussed.

2006년 광릉 활엽수림지역에서 관측된 자료를 활용하여 수정된 토양-식생-대기 모델을 보정하고 연간 순생태 교환량의 계절변동성에 대한 모델의 모의 능력을 평가하고 탄소교환을 조절하는 주요 인자에 대하여 조사하였다. 수정된 토양-식생-대기 모델(mSPA model)을 1000 LST부터 1400 LST까지 관측된 낮 시간의 평균 순 생태 교환량(Net ecosystem exchange)을 모의하도록 보정한 후 총 일차 생산량(Gross primary productivity)을 계산하는데 사용하였고 생태 호흡량(Ecosystem respiration)은 관측지에서 개발된 경험식을 사용하여 추정하였다. 모델 결과는 여름철에 낮 시간의 평균 기공 전도도는 일사량과 매우 높은 상관성이 있음을 나타내었고 수증기 포차는 기공전도도의 변화에 큰 영향을 미치지는 않음을 보였다. 모델은 성장기간에 두 개의 극대값을 갖는 관측된 순 생태교환량의 계절 변동성을 모의하였다. 모델에서 계산된 연간 총 생산량과 생태호흡량, 그리고 순 생태 교환량은 각각 $964gC\;m^{-2}\;yr^{-1}$, $733gC\;m^{-2}\;yr^{-1}$ 그리고 $-231gCm\;^{-2}\;yr^{-1}$이었다. 관측값에 기반하여 산정된 연구결과와 비교할 때 모델 추정값이 약 $140gC\;m^{-2}\;yr^{-1}$ 더 많은 탄소 흡수를 보였다. 복잡한 지형에서 연간 생태 교환량 추정의 불확실성에 대하여 논의하였다.

Keywords

References

  1. Amthor, J. S., 1994: Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynthesis Research 39, 320-350
  2. Amthor, J. S., M. L. Goulden, J. W. Munger, and S. C. Wofsy, 1994: Testing a mechanistic model of forest-canopy mass and energy exchange using eddy correlation: Carbon dioxide and ozone uptake by a mixed oak-maple stand. Australian Journal of Plant Physiology 21, 623-651 https://doi.org/10.1071/PP9940623
  3. Baldocchi, D., 1997: Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant, Cell and Environment 20, 1108-1122 https://doi.org/10.1046/j.1365-3040.1997.d01-147.x
  4. Baldocchi, D., E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, Ch. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechei, K. T. Paw U, K. Pilegaard, H. P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, 2001: Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of American Meteorological Society 32(11), 2415-2434
  5. Baldocchi, D., 2008: 'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany 56, 1-26 https://doi.org/10.1071/BT07151
  6. Chae, N., 2008: Soil CO2 efflux in a temperate forest ecosystem under monsoon climate in Northeast Asia. Ph. D. Dissertation. Yonsei University, 159pp
  7. Farquhar, G. D., and S. Von Caemmerer, 1982: Modelling of photosynthetic response to the environment. In Physiological Plant Ecology II. Encyclopedia of Plant Physiology, New series, Vol. 12B (eds O. L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler). Springer-Verlag, 549-587
  8. Hong, J., J. Kim, D. Lee, and J.-H. Lim, 2008: Estimation of the storage and advection effects on $H_2O$ and $CO_2$ exchanges in a hilly KoFlux forest catchment. Water Resource Research 44, W01426 https://doi.org/10.1029/2007WR006408
  9. Kang, S., S. Kim, S. Oh, and D. Lee, 2000: Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. Forest Ecology Management 136, 173-184 https://doi.org/10.1016/S0378-1127(99)00290-X
  10. Kondratyev, K. Y., V. F. Krapivin, and C. A. Varotsos, 2003: Global carbon cycle and climate change. Springer, 368pp
  11. Koren, V. I., J. Schaake, K. Mitchell, Q. Y. Duan, F. Chen, and J. M. Bake, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. Journal of Geophysical Research 104, 19,569-19,585 https://doi.org/10.1029/1999JD900232
  12. Kosugi, Y., and N. Matsuo, 2006: Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiology 26, 1173-1184 https://doi.org/10.1093/treephys/26.9.1173
  13. Kwon, H., S. Park, M. Kang, J. Yoo, R. Yuan, and J. Kim, 2007: Quality control and assurance of eddy covariance data at the two KoFlux sites. Korean Journal of Agricultural and Forest Meteorology 9(4), 260-267 https://doi.org/10.5532/KJAFM.2007.9.4.260
  14. Kwon, H., T. Y. Park, J. Hong, J. H. Lim, and J. Kim, 2009: Seasonality of net ecosystem carbon exchange in two major plant functional types in Korea, Asia-Pacific Journal of Atmospheric Sciences 45(2), 149-163
  15. Lee, Y. H., and L. Mahrt, 2004: Comparison of heat and moisture fluxes from a modified soil-plant-atmosphere model with observations from BOREAS. Journal of Geophysical Research 109, D08103 https://doi.org/10.1029/2003JD003949
  16. Lee, Y. H., J. Kim, and J. Hong, 2008: The simulation of water vapor and carbon dioxide fluxes over a rice paddy field by modified soil-plant-atmosphere model (mSPA). Asia-Pacific Journal of Atmospheric Sciences 44(1), 69-83
  17. Lee, Y. H., and S. U. Park, 2007: Evaluation of a modified soil-plant-atmosphere model for CO2 flux and latent heat flux in open canopies. Agricultural and Forest Meteorology 143, 230-241 https://doi.org/10.1016/j.agrformet.2006.12.007
  18. Lee, D., J. Kim, S. J. Kim, S. K. Moon, J. Lee, J.-H. Lim, Y. Son, S. Kang, S. Kim, K. Kim, N. Woo, B. Lee, and S. Kim, 2007: Lessons from cross-scale studies of water and carbon cycles in the Gwangneung forest catchment in a complex landscape of monsoon Korea. Korean Journal of Agricultural and Forest Meteorology 9, 149-160 https://doi.org/10.5532/KJAFM.2007.9.2.149
  19. Lim, J. H., J. H. Shin, G. X. Jin, J. H. Chun, and J. S. Oh, 2003: Forest structure, site characteristics and carbon budget of the Kwangneung Natural Forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5(2), 101-109
  20. Papale, D., M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini, T. Vesala, and D. Yakir, 2006: Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571-583 https://doi.org/10.5194/bg-3-571-2006
  21. Park, S. B., M. S. Kang, J. S. Kim, J. H. Lim, J. H. Chon, S. H. Park, Y. I. Kim, T. H. Hwang, N. Chae, T. J. Choi, S. K. Kang, S. K. Moon, J. Kim, 2006: The comparison between measured LAI and MODIS LAI in Gwangneung forest watershed, Proceedings of the autumn meeting of KMS, Korean Meteorological Society, Ilsan, 318-319
  22. Raich, J. W., and W. H. Schlesinger, 1992: The global carbon dioxide flux in soil respiration and its relationship to climate. Tellus B 44, 81-89 https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x
  23. Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. IIvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439 https://doi.org/10.1111/j.1365-2486.2005.001002.x
  24. Ryan, M. G., M. B. Lavigne, and S. T. Gower, 1997: Annual carbon cost of autotropic respiration in boreal forest ecosystems in relation to species and climate. Journal of Geophysical Research 102, 28871-28883 https://doi.org/10.1029/97JD01236
  25. Saigusa, N., S. Yamamoto, S. Murayama, H. Kondo, and N. Nishimura, 2005: Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agricultural and Forest Meteorology 134, 4-16 https://doi.org/10.1016/j.agrformet.2005.08.016
  26. Saito, T., T. Tanaka, H. Tanabe, Y. Matsumoto, and Y. Morikawa, 2003: Variations in transpiration rate and leaf cell turgor maintenance in saplings of deciduous broadleaved tree species common in cool temperate forests in Japan. Tree Physiology 23, 59-66 https://doi.org/10.1093/treephys/23.1.59
  27. Williams, M., E. B. Rastetter, D. N. Fernades, M. L. Goulden, S. C. Wofsy, G. R. Shaver, J. M. Melillo, J. W. Munger, S. M. Fan, and K. J. Nadelhoffer, 1996: Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by a light, nitrogen and soil/plant hydraulic properties. Plant, Cell and Environment 19, 911-927 https://doi.org/10.1111/j.1365-3040.1996.tb00456.x
  28. Wullschleger, S. D., 1993: Biochemical limitations to carbon assimilation in C3 plants - A retrospective analysis of the A/Ci curves from 109 species. Journal of experimental Botany 44(262), 907-920 https://doi.org/10.1093/jxb/44.5.907
  29. Zhang, J.-H., S.-J. Han, and G.-R. Yu, 2006: Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest. Agricultural and Forest Meteorology 137, 150-165 https://doi.org/10.1016/j.agrformet.2006.02.004

Cited by

  1. Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.233