DOI QR코드

DOI QR Code

Starting and propagating apoptotic signals in UVB irradiated keratinocytes

  • Van Laethem, An (Department of Molecular and Cell Biology, Cell Death Research and Therapy Laboratory, Catholic University of Leuven, Campus Gasthuisberg) ;
  • Garmyn, Marjan (Laboratory of Dermatology, Faculty of Medicine, Catholic University of Leuven, Campus Gasthuisberg) ;
  • Agostinis, Patrizia (Department of Molecular and Cell Biology, Cell Death Research and Therapy Laboratory, Catholic University of Leuven, Campus Gasthuisberg)
  • Received : 2008.08.01
  • Accepted : 2008.10.27
  • Published : 2009.03.01

Abstract

The ultraviolet (UV) B portion of the UV light has been recognized as the most prominent risk factor for the development of skin cancer, the most common malignancy in the Caucasian population. At the cellular level, UVB signal transduction regulates replicative arrest and DNA repair, gene expression and, when damage is beyond repair, apoptotic cell death, which is induced to protect the host against the accumulation of potentially mutagenic keratinocytes. An increasing body of evidence indicates that the UVB response in skin is a complex and multifaceted biological process. The UVB signal transduction originates at multiple intracellular sites, and the cross talk between dedicated molecular mediators acting within a complex signal network, determines whether the UVB damaged cell will survive, proliferate or die. However, very little is known about the original targets or direct chromophores that put in motion the UVB response in its main target: the keratinocyte. In this review we discuss the recent identification of signalling pathways linking apical UVB mediated damaging events with the induction of apoptosis. Understanding the molecular mechanisms that underlie the process of apoptotic cell death in UVB exposed keratinocytes, is of outmost importance to reveal how defects in apoptotic pathways can contribute to skin cancer.

Keywords

References

  1. Y. Matsumura and H. N. Ananthaswamy, Toxic effects of ultraviolet radiation on the skin, Toxicol. Appl. Pharmacol., 2004, 195, 298–308. https://doi.org/10.1016/j.taap.2003.08.019
  2. W. A. Bruls,H. Slaper, J. C. van der Leun and L. Berrens, Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths, Photochem. Photobiol., 1984, 40, 485–94. https://doi.org/10.1111/j.1751-1097.1984.tb04622.x
  3. R. Lavker and K. J. Kaidbey, The spectral dependence for UVAinduced cumulative damage in human skin., Invest Dermatol., 1997, 108, 17–21. https://doi.org/10.1111/1523-1747.ep12285613
  4. D. I. Pattison and M. J. Davies, Actions of ultraviolet light on cellular structures, EXS, 2006, 96, 131–57.
  5. J. Krutmann, The interaction of UVA and UVB wavebands with particular emphasis on signalling, Prog. Biophys. Mol. Biol., 2006, 92, 105–7. https://doi.org/10.1016/j.pbiomolbio.2006.02.018
  6. H. S. Black, F. R. de Gruijl, P. D. Forbes, J. E. Cleaver, H. N. Ananthaswamy, E. C. de Fabo, S. E. Ullrich and R. M. Tyrrell, Photocarcinogenesis: an overview, J. Photochem. Photobiol., 1997, 40, 29–47. https://doi.org/10.1016/S1011-1344(97)00021-3
  7. F. Trautinger, Mechanisms of photodamage of the skin and its functional consequences for skin ageing, Clin. Exp. Dermatol., 2001, 26, 573–7. https://doi.org/10.1046/j.1365-2230.2001.00893.x
  8. J. M. Sheehan and A. R. Young, The sunburn cell revisited: an update on mechanistic aspects, Photochem. Photobiol. Sci., 2002, 1, 365–77. https://doi.org/10.1039/b108291d
  9. A. Van Laethem, S. Claerhout, M. Garmyn and P. Agostinis, The sunburn cell: regulation of death and survival of the keratinocyte, Int. J. Biochem. Cell Biol., 2005, 37, 1547–53. https://doi.org/10.1016/j.biocel.2005.02.015
  10. H. Soehnge, A. Ouhtit and O. N. Ananthaswamy, Mechanisms of induction of skin cancer by UV radiation, Front. Biosci., 1997, 1, 538–51.
  11. R. J. Berg, H. Rebel, G. T. van der Horst, H. J. van Kranen, L. H. Mullenders, W. A. van Vloten and F. R. de Gruijl, Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice, Cancer Res., 2000, 60, 2858–63.
  12. C. S. Wu, C. C. Lan, M. H. Chiou and H. S. Yu, Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes, Acta Dermatol. Venereol., 2006, 86, 498–502. https://doi.org/10.2340/00015555-0161
  13. D. Fagot, D. Asselineau and F. Bernerd, Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production afterUV-B irradiation, Arch.Dermatol.Res., 2002, 293, 576–83. https://doi.org/10.1007/s00403-001-0271-1
  14. D. J. Leffell, The scientific basis of skin cancer, J. Am. Acad. Dermatol., 2000, 42, 18–22. https://doi.org/10.1067/mjd.2000.103340
  15. T. M. Runger and U. P. Kappes, Mechanisms of mutation formation with long-wave ultraviolet light (UVA), Photodermatol. Photoimmunol. Photomed., 2008, 24, 2–10. https://doi.org/10.1111/j.1600-0781.2008.00319.x
  16. D. Decraene, P. Agostinis, A. Pupe, P. de Haes and M. Garmyn, Acute response of human skin to solar radiation: regulation and function of the p53 protein, J. Photochem. Photobiol., 2001, 63, 78–83. https://doi.org/10.1016/S1011-1344(01)00204-4
  17. M. Oren, Decision making by p53: life, death and cancer, Cell Death Differ., 2003, 10, 431–42. https://doi.org/10.1038/sj.cdd.4401183
  18. A. Ziegler, A. S. Jonason, D. J. Leffell, J. A. Simon, H. W. Sharma, J. Kimmelman, L. Remington, T. Jacks and D. E. Brash, Sunburn and p53 in the onset of skin cancer, Nature, 1994, 372, 773–6. https://doi.org/10.1038/372773a0
  19. L. Latonen andM. Laiho, Cellular UV damage responses-functions of tumor suppressor p53, Biochim. Biophys. Acta, 2005, 1755, 71–89.
  20. S. Jin, T. Tong,W. Fan, F. Fan,M. J. Antinore, X. Zhu, L. Mazzacurati, X. Li, K. L. Petrik, B. Rajasekaran, M. Wu and Q. Zhan, GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity, Oncogene, 2002, 21, 8696–704. https://doi.org/10.1038/sj.onc.1206034
  21. Y. Shiloh, ATM and related protein kinases: safeguarding genome integrity, Nature Rev. Cancer, 2003, 3, 155–168. https://doi.org/10.1038/nrc1011
  22. L. D. Attardi and T. Jacks, The role of p53 in tumour suppression: lessons from mouse models, Cell. Mol. Life Sci., 1999, 55, 48–63. https://doi.org/10.1007/s000180050269
  23. W. Bruins, E. Zwart, L. D. Attardi, T. Iwakuma, E. M. Hoogervorst, R. B. Beems, B. Miranda, C. T. van Oostrom, J. van den Berg, G. J. van den Aardweg, G. Lozano, H. van Steeg, T. Jacks and A. de Vries, Increased sensitivity toUV radiation in mice with a p53 pointmutation at Ser389, Mol. Cell. Biol., 2004, 24, 8884–8894. https://doi.org/10.1128/MCB.24.20.8884-8894.2004
  24. J. S. Reis-Filho, B. Torio, A. Albergaria and F. C. Schmitt, p63 expression in normal skin and usual cutaneous carcinomas, J. Cutan. Pathol., 2002, 29, 517–23. https://doi.org/10.1034/j.1600-0560.2002.290902.x
  25. M. Papoutsaki, F. Moretti, M. Lanza, B. Marinari, V. Sartorelli, L. Guerrini, S. Chimenti, M. Levrero and A. Costanzo, A p38-dependent pathway regulates DeltaNp63 DNA binding to p53-dependent promoters in UV-induced apoptosis of keratinocytes, Oncogene, 2005, 24, 6970–5. https://doi.org/10.1038/sj.onc.1208835
  26. G. Pellegrini, E. Dellambra, O. Golisano, E. Martinelli, I. Fantozzi, S. Bondanza, D. Ponzin, F. McKeon and M. De Luca, p63 identifies keratinocyte stem cells, Proc. Natl. Acad. Sci. USA, 2001, 98, 3156–61. https://doi.org/10.1073/pnas.061032098
  27. J. Hildesheim, D. V. Bulavin, M. R. Anver, W. G. Alvord, M. C. Hollander, L. Vardanian and A. J. Fornace, Jr., Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53, Cancer Res., 2002, 62, 7305–7315.
  28. N. D. Marchenko, A. Zaika and U. M. Moll, Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling, J. Biol. Chem., 2000, 275, 16202–12. https://doi.org/10.1074/jbc.275.21.16202
  29. J. E. Chipuk, T. Kuwana, L. Bouchier-Hayes, N. M. Droin, D. D. Newmeyer,M. Schuler andD.R.Green, Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis, Science, 2004, 303, 1010–4. https://doi.org/10.1126/science.1092734
  30. Z. Assefa, A. Vantieghem, M. Garmyn,W. Declercq, P. Vandenabeele, J. R. Vandenheede, R. Bouillon, W. Merlevede and P. Agostinis, p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet B radiation-induced apoptosis, J. Biol. Chem., 2000, 275, 21416–21. https://doi.org/10.1074/jbc.M002634200
  31. K. H. Kraemer, Sunlight and skin cancer: another link revealed, Proc. Natl. Acad. Sci. USA, 1997, 94, 11–4. https://doi.org/10.1073/pnas.94.1.11
  32. D. A. Norris, M. H. Middleton, K. Whang, M. Schleicher, T. McGovern, S. D. Bennion, K. David-Bajar, D. Davis and R. C. Duke, Human keratinocytes maintain reversible anti-apoptotic defenses in vivo and in vitro, Apoptosis, 1997, 2, 136–48. https://doi.org/10.1023/A:1026456229688
  33. V. Chaturvedi, J. Z. Qin, L. Stennett, D. Choubey and B. J. Nickoloff, Resistance to UV-induced apoptosis in human keratinocytes during accelerated senescence is associated with functional inactivation of p53, J. Cell Physiol., 2004, 198, 100–109. https://doi.org/10.1002/jcp.10392
  34. A. Mandinova, K. Lefort, A. Tommasi di Vignano, W. Stonely, P. Ostano, G. Chiorino, H. Iwaki, J. Nakanishi and G. P. Dotto, The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response, EMBO J., 2008, 27, 1243–54. https://doi.org/10.1038/emboj.2008.45
  35. J. Z. Qin, P. Bacon, J. Panella, L. A. Sitailo, M. F. Denning and B. J. Nickoloff, Low-dose UV-radiation sensitizes keratinocytes to TRAIL-induced apoptosis, J. Cell Physiol., 2004, 200, 155–66. https://doi.org/10.1002/jcp.20017
  36. D. Kulms and T. Schwarz, Molecular mechanisms involved in UV-induced apoptotic cell death, Skin Pharmacol.Appl. SkinPhysiol., 2002, 15, 342–7. https://doi.org/10.1159/000064539
  37. B. Bang, R. Gniadecki, J. K. Larsen, O. Baadsgaard and L. Skov, In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells, Exp. Dermatol., 2003, 12, 791–8. https://doi.org/10.1111/j.0906-6705.2003.00091.x
  38. A. Grone, Keratinocytes and cytokines, Vet. Immunol. Immunopathol., 2002, 88, 1–12. https://doi.org/10.1016/S0165-2427(02)00136-8
  39. R. L. Eckert, T. Efimova, S. R. Dashti, S. Balasubramanian, A. Deucher, J. F. Crish, M. Sturniolo and F. Bone, Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated protein kinase, J. Invest. Dermatol. Symp. Proc., 2002, 7, 36–40.
  40. S. Kondo, D. N. Sauder, T. Kono, K. A. Galley and R. C. McKenzie, Differential modulation of interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) in human epidermal keratinocytes by UVB, Exp. Dermatol., 1994, 3, 29–39. https://doi.org/10.1111/j.1600-0625.1994.tb00263.x
  41. Y. Ogura, F. S. Sutterwala and R. A. Flavell, The inflammasome: first line of the immune response to cell stress, Cell., 2006, 126, 659–62. https://doi.org/10.1016/j.cell.2006.08.002
  42. F. Martinon, K. Burns and J. Tschopp, The inflammasome: a molecular platformtriggering activation of inflammatory caspases and processing of proIL-beta, Mol. Cell, 2002, 10, 417–26. https://doi.org/10.1016/S1097-2765(02)00599-3
  43. J. A. Kummer, R. Broekhuizen, H. Everett, L. Agostini, L. Kuijk, F. Martinon, R. van Bruggen and J. Tschopp, Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response, J. Histochem. Cytochem., 2007, 55, 443–52. https://doi.org/10.1369/jhc.6A7101.2006
  44. H. Watanabe, O. Gaide, V. Petrilli, F. Martinon, E. Contassot, S. Roques, J. A. Kummer, J. Tschopp and L. E. French, Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity, J. Invest. Dermatol., 2007, 127, 1956–63. https://doi.org/10.1038/sj.jid.5700819
  45. L.Feldmeyer,M.Keller,G. Niklaus,D. Hohl, S.Werner andH.D.Beer, The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes, Curr. Biol., 2007, 17, 1140–5. https://doi.org/10.1016/j.cub.2007.05.074
  46. D. Decraene, P. Agostinis, R. Bouillon, H. Degreef and M. Garmyn, Insulin-like growth factor-1-mediated AKT activation postpones the onset of ultraviolet B-induced apoptosis, providing more time for cyclobutane thymine dimer removal in primary human keratinocytes, J. Biol. Chem., 2002, 277, 32587–95. https://doi.org/10.1074/jbc.M111106200
  47. F. Belleudi, L. Leone, L. Aimati, M. G. Stirparo, G. Cardinali, C. Marchese, L. Frati, M. Picardo and M. R. Torrisi, Endocytic pathways and biological effects induced by UVB-dependent or ligand-dependent activation of the keratinocyte growth factor receptor, FASEB J., 2006, 20, 395–7. https://doi.org/10.1096/fj.05-3934fje
  48. Y. Xu, J. J. Voorhees and G. J. Fisher, Epidermal growth factor receptor is a critical mediator of ultraviolet B irradiation-induced signal transduction in immortalized human keratinocyte HaCaT cells, Am. J. Pathol., 2006, 169, 823–30. https://doi.org/10.2353/ajpath.2006.050449
  49. D. A. Lewis, S. A. Hurwitz andD. F. Spandau, UVB-induced apoptosis in normal human keratinocytes: role of the erbB receptor family, Exp. Cell Res., 2003, 284, 316–27.
  50. H. Q. Wang, T. Quan, T. T. F. He, F. Franke, J. J. Voorhees and G. J. Fisher, Epidermal growth factor receptor-dependent, NF-kappaB-independent activation of the phosphatidylinositol 3-kinase/Akt pathway inhibits ultraviolet irradiation-induced caspases-3, -8, and -9 in human keratinocytes, J. Biol. Chem., 2003, 278, 45737–45. https://doi.org/10.1074/jbc.M300574200
  51. M. Seo, M. J. Lee, J. H. Heo, Y. I. Lee, Y. Kim, S. Y. Kim, E. S. Lee and Y. S. Juhnn, G protein beta gamma subunits augment UVB-induced apoptosis by stimulating the release of soluble heparin binding EGF-like growth factor fromhuman keratinocytes, J. Biol. Chem., 2007, 282, 24720–30. https://doi.org/10.1074/jbc.M702343200
  52. E. Fritsche, C. Schafer, C. Calles, T. Bernsmann, T. Bernshausen, M. Wurm, U. Hubenthal, J. E. Cline, H. Hajimiragha, P. Schroeder, L. O. Klotz, A. Rannug, P. Furst, H. Hanenberg, J. Abel and J. Krutmann, Lightening up theUVresponse by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultravioletBradiation, Proc. Natl. Acad. Sci. USA, 2007, 104, 8851–6. https://doi.org/10.1073/pnas.0701764104
  53. P. Agostinis, M. Garmyn and A. Van Laethem, The aryl hydrocarbon receptor: An illuminating effector of the UVB response, Sci STKE, 2007, 403, pe49.
  54. D. R. Bickers and M. Athar, Oxidative stress in the pathogenesis of skin disease, J. Invest. Dermatol., 2006, 126, 2565–75. https://doi.org/10.1038/sj.jid.5700340
  55. M. Ding, J. Li, S. S. Leonard, X. Shi, M. Costa, V. Castranova, V. Vallyathan and C. Huang, Differential role of hydrogen peroxide in UV-induced signal transduction, Mol. Cell. Biochem., 2002, 234–235, 81–90. https://doi.org/10.1023/A:1015901232124
  56. H. R. Rezvani, F. Mazurier, M. Cario-Andre, C. Pain, C. Ged, A. Taieb and H. de Verneuil, Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes, J. Biol. Chem., 2006, 281, 17999–8007. https://doi.org/10.1074/jbc.M600536200
  57. G. H. Jin, Y. Liu, S. Z. Jin, X. D. Liu and S. Z. Liu, UVB induced oxidative stress in human keratinocytes and protective effect of antioxidant agents, Radiat. Environ. Biophys., 2007, 46, 61–8. https://doi.org/10.1007/s00411-007-0096-1
  58. Z. Assefa,M. Garmyn, A. Vantieghem,W. Declercq, P. Vandenabeele, J. R. Vandenheede and P. Agostinis, Ultraviolet B radiation-induced apoptosis in human keratinocytes: cytosolic activation of procaspase-8 and the role of Bcl-2, FEBS Lett., 2003, 540, 125–32. https://doi.org/10.1016/S0014-5793(03)00238-2
  59. D. E. Heck, A. M. Vetrano, T. M. Mariano and J. D. Laskin, UVB light stimulates production of reactive oxygen species: unexpected role for catalase, J. Biol. Chem., 2003, 278, 22432–6. https://doi.org/10.1074/jbc.C300048200
  60. C. S. Sander, H. Chang, S. Salzmann, C. S. M¨ uller, S. Ekanayake-Mudiyanselage, P. Elsner and J. J. Thiele, Photoaging is associated with protein oxidation in human skin in vivo, J. Invest. Dermatol., 2002, 118, 618–25. https://doi.org/10.1046/j.1523-1747.2002.01708.x
  61. E. Kvam and R.M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18(12), 2379–84. https://doi.org/10.1093/carcin/18.12.2379
  62. A. Van Laethem, K. Nys, S. Van Kelst, S. Claerhout, H. Ichijo, J. R. Vandenheede,M.Garmyn and P. Agostinis,Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes, Free Radical Biol. Med., 2006, 41, 1361–71. https://doi.org/10.1016/j.freeradbiomed.2006.07.007
  63. H. Wang and I. E. Kochevar, Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes, Free Radic Biol. Med., 2005, 38, 890–7. https://doi.org/10.1016/j.freeradbiomed.2004.12.005
  64. J. D. Lambeth, NOX enzymes and the biology of reactive oxygen, Nat. Rev. Immunol., 2004, 4, 181–9. https://doi.org/10.1038/nri1312
  65. Z. Assefa, A. Van Laethem, M. Garmyn and P. Agostinis, Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors, Biochim. Biophys. Acta, 2005, 1755, 90–106.
  66. D. Decraene,K. Smaers,D. Gan,T.Mammone,M.Matsui,D. Maes,L. Declercq and M. Garmyn, A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes, J. Invest. Dermatol., 2004, 122, 484–91. https://doi.org/10.1046/j.0022-202X.2004.22215.x
  67. D. Peus, R. A. Vasa, A. Beyerle, A. Meves, C. Krautmacher andM. R. Pittelkow, UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes, J. Invest. Dermatol., 1999a, 112, 751–6. https://doi.org/10.1046/j.1523-1747.1999.00584.x
  68. F. Afaq, N. Ahmad and H. Mukhtar, Suppression of UVB-induced phosphorylation of mitogen-activated protein kinases and nuclear factor kappa B by green tea polyphenol in SKH-1 hairless mice, Oncogene, 2003, 22, 9254–64. https://doi.org/10.1038/sj.onc.1207035
  69. M. Nomura, A. Kaji,W. Y. Ma, S. Zhong, G. Liu, G. T. Bowden, K. I. Miyamoto and Z. Dong, Mitogen- and stress-activated protein kinase 1 mediates activation of Akt by ultraviolet B irradiation, J. Biol. Chem., 2001, 276, 25558–67. https://doi.org/10.1074/jbc.M101164200
  70. A. M. Bode and Z. Dong,Mitogen-activated protein kinase activation in UV-induced signal transduction, Sci STKE, 2003, 28.
  71. A. Van Laethem, S. Van Kelst, S. Lippens, W. Declercq, P. Vandenabeele, S. Janssens, J. R. Vandenheede, M. Garmyn and P. Agostinis, Activation of p38MAPKis required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes, FASEB J., 2004, 18, 1946–8. https://doi.org/10.1096/fj.04-2285fje
  72. S. Gross, A. Knebel, T. Tenev, A. Neininger, M. Gaestel, P. Herrlich and F. D. Bohmer, Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction, J. Biol. Chem., 1999, 274, 26378–86. https://doi.org/10.1074/jbc.274.37.26378
  73. J. Matsukawa, A. Matsuzawa, K. Takeda and H. Ichijo, The ASK1-MAPkinase cascades in mammalian stress response, J. Biochem., 2004, 136, 261–5. https://doi.org/10.1093/jb/mvh134
  74. H. R.Rezvani, S. Dedieu, S. North, F. Belloc, R.Rossignol, T. Letellier, H. de Verneuil, A. Taieb and F. Mazurier, Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure, J. Biol. Chem., 2007, 282, 16413–22. https://doi.org/10.1074/jbc.M611397200
  75. C. Saliou, M. Kitazawa, L. McLaughlin, J. P. Yang, J. K. Lodge, T. Tetsuka, K. Iwasaki, J. Cillard, T. Okamoto and L. Packer, Antioxidants modulate acute solar ultraviolet radiation-induced NF-kappa- B activation in a human keratinocyte cell line, Free Radical Biol. Med., 1999, 26, 174–83. https://doi.org/10.1016/S0891-5849(98)00212-3
  76. D. A. Lewis and D. F. Spandau, UVB-induced activation of NF-kappaB is regulated by the IGF-1R and dependent on p38 MAPK, J. Invest. Dermatol., 2008, 128, 1022–9. https://doi.org/10.1038/sj.jid.5701127
  77. K. Otkjaer, K. Kragballe, C. Johansen, A. T. Funding, H. Just, U. B. Jensen, L. G. Sorensen, P. L. Norby, J. T. Clausen and L. Iversen, IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms, J. Invest. Dermatol., 2007, 127, 1326–36. https://doi.org/10.1038/sj.jid.5700713
  78. M. Karin and Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity, Annu. Rev. Immunol., 2000, 18, 621–63. https://doi.org/10.1146/annurev.immunol.18.1.621
  79. P. Herrlich, M. Karin and C. Weiss, Supreme EnLIGHTenment: damage recognition and signaling in the mammalian UV response, Mol. Cell, 2008, 29, 279–90. https://doi.org/10.1016/j.molcel.2008.01.001
  80. J. Z. Qin, V. Chaturvedi, M. F. Denning, D. Choubey, M. O. Diaz and B. J. Nickoloff, Role of NF-kappaB in the apoptotic-resistant phenotype of keratinocytes, J. Biol. Chem., 1999, 274, 37957–64. https://doi.org/10.1074/jbc.274.53.37957
  81. M. van Hogerlinden, B. L. Rozell, L. Ahrlund-Richter and R. Toftgard, Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling, Cancer Res, 1999, 59, 3299–303.
  82. D. A. Lewis and D. F. Spandau, UVB activation of NF-kappaB in normal human keratinocytes occurs via a unique mechanism, Arch. Dermatol. Res., 2007, 299, 93–101. https://doi.org/10.1007/s00403-006-0729-2
  83. S. Grundstrom, P. Anderson, P. Scheipers and A. Sundstedt, Bcl-3 and NFkappaB p50-p50 homodimers act as transcriptional repressors in tolerant CD4+ T cells, J. Biol. Chem., 2004, 279, 8460–8. https://doi.org/10.1074/jbc.M312398200
  84. S. K. Mantena and S.K.Katiyar,Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes, Free Radical Biol. Med., 2006, 40, 1603–14. https://doi.org/10.1016/j.freeradbiomed.2005.12.032
  85. B. J. Nickoloff, J. Z. Qin, V. Chaturvedi, P. Bacon, J. Panella andM. F. Denning,Life and death signaling pathways contributing to skin cancer, J. Invest. Dermatol. Symp. Proc., 2002, 7, 27–35.
  86. L. A. Sitailo, S. S. Tibudan and M. F. Denning, Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes, J. Biol. Chem., 2002, 277, 19346–52. https://doi.org/10.1074/jbc.M200401200
  87. R.Takasawa and S.Tanuma, Sustained release of Smac/DIABLOfrom mitochondria commits to undergo UVB-induced apoptosis, Apoptosis, 2003, 8, 291–9. https://doi.org/10.1023/A:1023629023696
  88. L. A. Sitailo, S. S. Tibudan and M. F. Denning, Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C delta catalytic domain, J. Invest. Dermatol., 2004, 123, 434–443. https://doi.org/10.1111/j.0022-202X.2004.23403.x
  89. M. F. Denning, Y. Wang, S. Tibudan, S. Alkan, B. J. Nickoloff and J. Z. Qin, Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinaseC, Cell Death Differ., 2002, 9, 40–52. https://doi.org/10.1038/sj.cdd.4400929
  90. D. Grossman, J. M. McNiff, F. Li and D. C. Altieri, Expression of the apoptosis inhibitor, survivin, in nonmelanoma skin cancer and gene targeting in a keratinocyte cell line, Lab Invest., 1999, 79, 1121–6.
  91. D. Grossman, P. J. Kim, O. P. Blanc-Brude, D. E. Brash, S. Tognin, P. C. Marchisio and D. C. Altieri, Transgenic expression of survivin in keratinocytes counteracts UVB-induced apoptosis and cooperates with loss of p53, J. Clin. Invest., 2001, 108, 991–9. https://doi.org/10.1172/JCI13345
  92. D. Kulms and T. Schwarz, Independent contribution of three different pathways to ultraviolet-B-induced apoptosis, Biochem. Pharmacol., 2002, 64, 837–41. https://doi.org/10.1016/S0006-2952(02)01146-2
  93. D.V. Bulavin, S. Saito, M.C. Hollander,K. Sakaguchi,C.W.Anderson, E. Appella and A. J. Fornace, Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation, EMBO J., 1999, 18, 6845–54. https://doi.org/10.1093/emboj/18.23.6845
  94. Q. B. She, N. Chen and Z. Dong, ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation, J. Biol. Chem., 2000, 275, 20444–9. https://doi.org/10.1074/jbc.M001020200
  95. D. A. Lewis, Q. Yi, J. B. Travers and D. F. Spandau, UVB-induced Senescence in HumanKeratinocytesRequires a Functional Insulin-like Growth Factor-1 Receptor and p53, Mol Biol Cell., 2008, 19, 1346–1353. https://doi.org/10.1091/mbc.E07-10-1041
  96. W. Englaro, B. Derijard, J. P. Ortonne and R. Ballotti, Solar ultraviolet light activates extracellular signal-regulated kinases and the ternary complex factor in human normal keratinocytes, Oncogene, 1998, 16, 661–4. https://doi.org/10.1038/sj.onc.1201536
  97. T.W. Fischer,M. A. Zmijewski, J.Wortsman and A. Slominski,Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes, J. Pineal Res., 2008, 44, 397–407. https://doi.org/10.1111/j.1600-079X.2007.00542.x
  98. L. Verschooten, S. Claerhout, A. Van Laethem, P. Agostinis and M. Garmyn, New strategies of photoprotection, Photochem. Photobiol., 2006, 82, 1016–23. https://doi.org/10.1562/2006-04-27-IR-884.1
  99. C. Denicourt and S. F.Dowdy, Medicine. Targeting apoptotic pathways in cancer cells, Science, 2004, 305, 1411–3. https://doi.org/10.1126/science.1102974

Cited by

  1. Effects of ginsenoside Rg2 on the ultraviolet B-induced DNA damage responses in HaCaT cells vol.382, pp.1, 2010, https://doi.org/10.1007/s00210-010-0522-9
  2. Crude polysaccharide from an anti-UVB cell clone of Bupleurum scorzonerifolium protect HaCaT cells against UVB-induced oxidative stress vol.63, pp.6, 2009, https://doi.org/10.1007/s10616-011-9381-6
  3. Autocrine abscisic acid mediates the UV‐B‐induced inflammatory response in human granulocytes and keratinocytes vol.227, pp.6, 2009, https://doi.org/10.1002/jcp.22987
  4. Increased Activity of Cell Surface Peptidases in HeLa Cells Undergoing UV-Induced Apoptosis Is Not Mediated by Caspase 3 vol.13, pp.3, 2009, https://doi.org/10.3390/ijms13032650
  5. Loss of Hairless Confers Susceptibility to UVB-Induced Tumorigenesis via Disruption of NF-kappaB Signaling vol.7, pp.6, 2009, https://doi.org/10.1371/journal.pone.0039691
  6. Pattern of sensitivity of progressive cutaneous squamous cell carcinoma cells to UVB and oxidative stress-induced cell death vol.12, pp.1, 2013, https://doi.org/10.1039/c2pp25064k
  7. 3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism vol.1833, pp.3, 2009, https://doi.org/10.1016/j.bbamcr.2012.12.003
  8. Low Dose Ultraviolet B Irradiation Increases Hyaluronan Synthesis in Epidermal Keratinocytes via Sequential Induction of Hyaluronan Synthases Has1–3 Mediated by p38 and Ca2+/Calmodul vol.288, pp.25, 2009, https://doi.org/10.1074/jbc.m113.472530
  9. Characterization of a Human Skin Equivalent Model to Study the Effects of Ultraviolet B Radiation on Keratinocytes vol.20, pp.7, 2009, https://doi.org/10.1089/ten.tec.2013.0293
  10. In Vitro Investigations on the Effect of Dermal Fibroblasts on Keratinocyte Responses to Ultraviolet B Radiation vol.90, pp.6, 2009, https://doi.org/10.1111/php.12317
  11. The scaffold protein JLP plays a key role in regulating ultraviolet B‐induced apoptosis in mice vol.19, pp.4, 2009, https://doi.org/10.1111/gtc.12135
  12. Molecular signaling cascades involved in nonmelanoma skin carcinogenesis vol.473, pp.19, 2009, https://doi.org/10.1042/bcj20160471
  13. Inflammasomes in Inflammation-Induced Cancer vol.8, pp.None, 2009, https://doi.org/10.3389/fimmu.2017.00271
  14. Ultraviolet B Irradiation Causes Stimulator of Interferon Genes-Dependent Production of Protective Type I Interferon in Mouse Skin by Recruited Inflammatory Monocytes vol.69, pp.4, 2009, https://doi.org/10.1002/art.39987
  15. Protective effect of different antioxidant agents in UVB-irradiated keratinocytes vol.61, pp.3, 2017, https://doi.org/10.4081/ejh.2017.2784
  16. Unexpected dose response of HaCaT to UVB irradiation vol.54, pp.8, 2009, https://doi.org/10.1007/s11626-018-0280-4
  17. Inhibitory effect of Carnosol on UVB-induced inflammation via inhibition of STAT3 vol.42, pp.3, 2009, https://doi.org/10.1007/s12272-018-1088-1
  18. Apoptosis, the only cell death pathway that can be measured in human diploid dermal fibroblasts following lethal UVB irradiation vol.10, pp.1, 2009, https://doi.org/10.1038/s41598-020-75873-1
  19. The Anti‐photoaging Effects of Pre‐ and Post‐treatment of Platelet‐rich Plasma on UVB‐damaged HaCaT Keratinocytes vol.97, pp.3, 2009, https://doi.org/10.1111/php.13354
  20. Protection against UVB deleterious skin effects in a mouse model: effect of a topical emulsion containing Cordia verbenacea extract vol.20, pp.8, 2021, https://doi.org/10.1007/s43630-021-00079-x