DOI QR코드

DOI QR Code

The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase

  • Alipour, Bagher Said (Department of Biochemistry, Faculty of Basic Sciences, Tarbiat Modares University) ;
  • Hosseinkhani, Saman (Department of Biochemistry, Faculty of Basic Sciences, Tarbiat Modares University) ;
  • Ardestani, Sussan K. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Moradi, Ali (Department of Biochemistry, Faculty of Basic Sciences, Tarbiat Modares University)
  • Received : 2009.01.29
  • Accepted : 2009.04.09
  • Published : 2009.06.01

Abstract

Luciferases are the enzymes that catalyze the reactions that produce light in bioluminescence. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. Amongst different beetle luciferases, those from phrixothrix rail-road worm with a unique additional residue (Arg353) emit red bioluminescence color naturally. Insertion of $Arg^{356}$ in Lampyris turkestanicus luciferase changed the emitted light to red with a bimodal bioluminescence spectrum. By insertion and substitution of positively-charged residues, different specific mutation (E354R/$Arg^{356}$, E354K/$Arg^{356}$, E354R, E354K) lead to changes of the bioluminescence color. Bioluminescence emission spectra indicate that substitution of E354 by R along with insertion of $Arg^{356}$ produces a luciferase that emits red light with a single peak bioluminescence spectrum. The comparison of mutants with native luciferase shows that mutations of firefly luciferase resulted in structural and functional thermostability. Comparative study of native and mutant luciferase (E354R/$Arg^{356}$) by intrinsic and extrinsic fluorescence, CD spectropolarimetry, and homology modeling revealed mutation brought about an increase in content of secondary structure and globular compactness of L. turkestanicus luciferase. On the other hand, $pK_a$ of amino acids in the flexible loop decreased upon introducing of positive charges.

Keywords

Acknowledgement

Supported by : Nanotechnology committee

References

  1. M. Deluca and W. D. McElroy, Purification and properties of firefly luciferase, Methods Enzymol., 1978, 57, 3-15.
  2. H. H. Seliger and W. D. McElroy, Quantum yield in the oxidation of firefly luciferin, Biochem. Biophys. Res. Commun., 1959, 1, 21-24. https://doi.org/10.1016/0006-291X(59)90082-8
  3. H. H. Seliger and W. D. McElroy, Spectral emission and quantum yield of firefly bioluminescence, Arch. Biochem. Biophys., 1960, 88, 136-141. https://doi.org/10.1016/0003-9861(60)90208-3
  4. W. H. Biggley, H. J. E. Lloyd and H. H. Seliger, The Spectral Distribution of Firefly Light, J. Gen. Physiol., 1967, 50, 1681-1692. https://doi.org/10.1085/jgp.50.6.1681
  5. N. P. Colepicolo, C. Costa and E. J. H. Bechara, Brazilian species of elaterid luminescent beetles. Luciferin identification and bioluminescence spectra, Insect Biochem., 1986, 16, 803-810. https://doi.org/10.1016/0020-1790(86)90117-4
  6. V. R. Viviani and E. J. H. Bechara, Biophysical and biochemical aspects of phengodid (railroad-worm) bioluminescence, Photochem. Photobiol., 1993, 58, 615-622. https://doi.org/10.1111/j.1751-1097.1993.tb04941.x
  7. V. R. Viviani and E. J. H. Bechara, Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and pH effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases, Photochem. Photobiol., 1995, 62, 490-495. https://doi.org/10.1111/j.1751-1097.1995.tb02373.x
  8. T. Arslan, S. V. Mamaev, N. V. Mamaeva and S. M. Hecht, Structurally Modified Firefly Luciferase. Effects of Amino Acid Substitution at Position 286, J. Am. Chem. Soc., 1997, 119, 10877-10887. https://doi.org/10.1021/ja971927a
  9. N. Kajiyama and E. Nakano, Isolation and characterization ofmutants of firefly luciferase which produce different colors of light, Protein Eng., Des. Sel., 1991, 4, 691-693. https://doi.org/10.1093/protein/4.6.691
  10. N. k. Tafreshi, M. Sadeghizadeh, R. Emamzadeh, B. Ranjbar, H. Naderi-Manesh and S. Hosseinkhani, Site-directedmutagenesis of firefly luciferase: Implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases, Biochem. J., 2008, 412, 27-33. https://doi.org/10.1042/BJ20070733
  11. K. V. Wood, A. Y. Lam, H. H. Seliger and W. D. McElroy, Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors, Science, 1989, 244, 700-702. https://doi.org/10.1126/science.2655091
  12. Y. Ohmiya, T. Hirano and M. Ohashi, The structural origin of the color differences in the bioluminescence of firefly luciferase, FEBS Lett., 1996, 384, 83-86. https://doi.org/10.1016/0014-5793(96)00288-8
  13. V. R. Viviani, A. J. S. Neto and Y. Ohmiya, The influence of the region between residues 220 and 344 and beyond in Phrixotrix railroad worm luciferases green and red bioluminescence, Protein Eng., Des. Sel., 2004, 17, 113-117. https://doi.org/10.1093/protein/gzh016
  14. N. N. Ugarova and L. Y. Brovko, Relationship between the structure of the protein globule and bioluminescence spectra of firefly luciferase, Russ. Chem. Bull., 2001, 50, 1752-1761. https://doi.org/10.1023/A:1014365609421
  15. M. Deluca, Hydrophobic nature of the active site of firefly luciferase, Biochemistry, 1969, 8, 160-166. https://doi.org/10.1021/bi00829a023
  16. E. H. White and B. Branchini, Modification of firefly luciferase with a luciferin analog. A red light producing enzyme, J. Am. Chem. Soc., 1975, 97, 1243-1245. https://doi.org/10.1021/ja00838a049
  17. F. McCapra, D. J. Gilfoyle, D. W. Young, N. J. Church and P. Spencer, in Bioluminescence and Chemiluminescence, Fundamental and Applied Aspects, ed. A. K. Campbell, L. J. Kricka and P. E. Stanley, 1994, Wiley, Chichester, pp. 387-391.
  18. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, R. A. Magyar, S. A. Gonzalez, M. C. Ruggiero and J. G. Stroh, An alternative mechanism of bioluminescence color determination in firefly luciferase, Biochemistry, 2004, 43, 7255-7262. https://doi.org/10.1021/bi036175d
  19. E. Conti, N. P. Franks and P. Brick, Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes, Structure, 1996, 4, 287-298. https://doi.org/10.1016/S0969-2126(96)00033-0
  20. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata and H. Kato, Structural basis for the spectral difference in luciferase bioluminescence, Nature, 2006, 440, 372-376. https://doi.org/10.1038/nature04542
  21. A. Lundin, Optimized assay of firefly luciferase with stale light emission, in Bioluminescence and Chemiluminescence: Status Report, ed. A. Szalay, L. J. Kricka and P. E. Stanley, 1993, John Wiley, Chichester, UK, pp. 291-295.
  22. S. J. Gould and S. Subramani, firefly luciferase as a tool in molecular and cell biology, Anal. Biochem., 1988, 175, 5-13. https://doi.org/10.1016/0003-2697(88)90353-3
  23. C. H. Contag and M. H. Bachmann, Advances in in vivo bioluminescence imaging of gene expression, Annu. Rev. Biomed. Eng., 2002, 4, 235-260. https://doi.org/10.1146/annurev.bioeng.4.111901.093336
  24. T. C. Doyle, S. M. Burns and C. h. Contag, In vivo Bioluminescence imaging for integrated studies of infection, Cell. Microbiol., 2004, 6, 303-317. https://doi.org/10.1111/j.1462-5822.2004.00378.x
  25. A. Roda, P. Pasini, M. Mirasoli, E. Michelini and M. Guardigli, Biotechnological application of bioluminescence, Trends Biotechnol., 2004, 22, 295-303. https://doi.org/10.1016/j.tibtech.2004.03.011
  26. B. R. Branchini, T. R. Southworth, N. F. Khattak, E. Michelini and A. Roda, Red and green emitting firefly luciferase mutants for bioluminescence reporter application, Anal. Biochem., 2005, 345, 140-148. https://doi.org/10.1016/j.ab.2005.07.015
  27. P. J. White, D. J. Squirrell, P. Arnaud, C. R. Lowe and J. A. Murray, Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354, Biochem. J., 1996, 319, 343-350. https://doi.org/10.1042/bj3190343
  28. H. H. Seliger and W. D. McElroy, The colors of firefly bioluminescence: enzyme configuration and species specificity, Proc. Natl. Acad. Sci. U. S. A., 1964, 52, 75-81. https://doi.org/10.1073/pnas.52.1.75
  29. N. Kajiyama and E. Nakano, Thermostabilization of firefly luciferase by a single amino acid substitution at position 217, Biochemistry, 1993, 32, 13795-13799. https://doi.org/10.1021/bi00213a007
  30. L. C. Tisi, P. J. White, D. J. Squirrell, P. Arnaud, C. R. Lowe and J. A. Murray, Development of a thermostability firefly luciferase, Anal. Chim. Acta, 2002, 457, 115-123. https://doi.org/10.1016/S0003-2670(01)01496-9
  31. N. K. Tafreshi, S. Hosseinkhani, M. Sadeghizadeh, M. Sadeghi, B. Ranjbar and H. Naderi-Manesh, The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase, J. Biol. Chem., 2007, 282, 8641-8647. https://doi.org/10.1074/jbc.M609271200
  32. R. M. Horton, H. d. Hun, S. N. Ho, J. K. Pullen and L. R. Pease, Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension, Gene, 1989, 77, 61-68. https://doi.org/10.1016/0378-1119(89)90359-4
  33. B. S. Alipour, S. Hosseinkhani, M. Nikkhah, H. Naderi-Manesh, M. J. Chaichi and S. Kazempour, Molecular cloning, sequence analysis, and expression of a cDNA encoding the luciferase from the glow-worm Lampyris turkestanicus, Biochem. Biophys. Res. Commun., 2004, 325, 215-222. https://doi.org/10.1016/j.bbrc.2004.10.022
  34. M. M. Bradford, A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  35. S. Hosseinkhani, R. Szittner, M. Nemat-Gorgani and E. A. Meighen, Adsorptive immobilization of bacterial luciferases on alkyl-substituted Sepharose 4B, Enzyme Microb. Technol., 2003, 321, 86-93.
  36. M. R. Eftink and C. A. Ghiron, Exposure of tryptophanyl residues and protein dynamics, Biochemistry, 1977, 16, 5546-5551. https://doi.org/10.1021/bi00644a024
  37. M. Mehrabi, S. Hosseinkhani and S. Ghobadi, Stabilization of firefly luciferase against thermal stress by osmolytes, Int. J. Biol. Macromol., 2008, 43, 187-91. https://doi.org/10.1016/j.ijbiomac.2008.05.001
  38. J. Y. Cassim and J. T. Yang, A computerized calibration of the circular dichromate, Biochemistry, 1969, 8, 1947-1951. https://doi.org/10.1021/bi00833a026
  39. T. Schwede, J. Kopp, N. Guex and M. C. Peitsch, SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Res., 2003, 31, 3381-3385. https://doi.org/10.1093/nar/gkg520
  40. S. H. Northrup, MacroDox, v.2.0.2, Software for the prediction of macromolecular interaction, Tennessee Technological University, Cookeville, TN, 1995.
  41. G. Vriend, WHAT IF: A molecular modeling and drug design program, J. Mol. Graph., 1990, 8, 52-56. https://doi.org/10.1016/0263-7855(90)80070-V
  42. A. Riahi Madvar, S. Hosseinkhani, K. Khajeh, B. Ranjabr and A. Asoodeh, Implication of a critical residue (Glu175) in structure and function of bacterial luciferase, FEBS Lett., 2005, 579, 4701-4706. https://doi.org/10.1016/j.febslet.2005.07.040
  43. J. R. Lakowicz and G. Weber, Quenching of fluorescence by oxygen. A probe for Structural fluctuations in macromolecules, Biochemistry, 1973, 12, 4171-4179. https://doi.org/10.1021/bi00745a021
  44. A. Moradi, S. Hosseinkhani, H. Naderi-Manesh, M. Sadeghizadeh and B. S. Alipour, Effect of Charge Distribution in a Flexible Loop on the Bioluminescence Color of Firefly Luciferases, Biochemistry, 2009, 48, 575-582. https://doi.org/10.1021/bi802057w
  45. A. Kitayama, H. Yoshizaki, Y. Ohmiya, H. Ueda and T. Nagamune, Creation of a thermostable firefly luciferase with a pH-insensitive luminescence colour, Photochem. Photobiol., 2003, 77, 333-338. https://doi.org/10.1562/0031-8655(2003)077<0333:COATFL>2.0.CO;2
  46. Y. Ando, K. Niwa, N. Yamayda, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya and H. Akiyama, Firefly bioluminescence quantum yield and color change by pH- sensitive green emission, Nat. Photonics, 2008, 2, 44-47. https://doi.org/10.1038/nphoton.2007.251
  47. V. Viviani, A. Uchida, N. Suenaga, M. Ryufuka and Y. Ohmiya, Thr 226 is a key residue for bioluminescence spectra determination in beetle luciferases, Biochem. Biophys. Res. Commun., 2001, 280, 1286-1291. https://doi.org/10.1006/bbrc.2001.4254
  48. S. Hosseinkhani, R. Szittner and E. A. Meighen, Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay, Biochem. J., 2005, 385, 575-580. https://doi.org/10.1042/BJ20040863
  49. B. Baggett, R. Roy, S. Momen, S. Morgan, L. Tisi, D. Morse and R. J. Gillies, Thermostability of firefly luciferases affects efficiency of detection by in vivo bioluminescence, Mol. Imaging, 2004, 3, 324-332. https://doi.org/10.1162/1535350042973553

Cited by

  1. Color-Tuning Mechanism of Firefly Investigated by Multi-Configurational Perturbation Method vol.132, pp.2, 2009, https://doi.org/10.1021/ja908051h
  2. Relationship between stability and bioluminescence color of firefly luciferase vol.9, pp.3, 2009, https://doi.org/10.1039/b9pp00161a
  3. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity vol.9, pp.8, 2009, https://doi.org/10.1039/c0pp00105h
  4. The Chemistry of Bioluminescence: An Analysis of Chemical Functionalities vol.12, pp.17, 2009, https://doi.org/10.1002/cphc.201100504
  5. Effects of Sucrose and Trehalose on Stability, Kinetic Properties, and Thermal Aggregation of Firefly Luciferase vol.165, pp.2, 2009, https://doi.org/10.1007/s12010-011-9276-1
  6. Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase vol.10, pp.7, 2009, https://doi.org/10.1039/c1pp05012e
  7. Thermostabilization of firefly luciferase by in vivo directed evolution. vol.24, pp.11, 2009, https://doi.org/10.1093/protein/gzr044
  8. The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase vol.44, pp.2, 2009, https://doi.org/10.5483/bmbrep.2011.44.2.102
  9. Water‐miscible ionic liquids as novel effectors for the firefly luciferase reaction vol.13, pp.2, 2013, https://doi.org/10.1002/elsc.201100214
  10. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective vol.12, pp.2, 2009, https://doi.org/10.1039/c2pp25140j
  11. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence vol.12, pp.11, 2009, https://doi.org/10.1039/c3pp50242b
  12. Protein thermostability engineering vol.6, pp.116, 2009, https://doi.org/10.1039/c6ra16992a
  13. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase vol.11, pp.9, 2009, https://doi.org/10.1371/journal.pone.0162318
  14. Prediction of bioluminescent proteins by using sequence-derived features and lineage-specific scheme vol.18, pp.1, 2009, https://doi.org/10.1186/s12859-017-1709-6
  15. ΔFlucs: Brighter Photinus pyralis firefly luciferases identified by surveying consecutive single amino acid deletion mutations in a thermostable variant vol.115, pp.1, 2009, https://doi.org/10.1002/bit.26451
  16. Beetle luciferases with naturally red- and blue-shifted emission vol.1, pp.4, 2009, https://doi.org/10.26508/lsa.201800072
  17. Rational Side-Chain Amino Acid Substitution in Firefly Luciferase for Improved Thermostability vol.54, pp.6, 2009, https://doi.org/10.1134/s0003683819010204
  18. Evaluation of Luciferase Thermal Stability by Arginine Saturation in the Flexible Loops vol.17, pp.1, 2009, https://doi.org/10.2174/1570164616666190320151005
  19. The elusive relationship between structure and colour emission in beetle luciferases vol.5, pp.1, 2009, https://doi.org/10.1038/s41570-020-00238-1