DOI QR코드

DOI QR Code

Effects of solar ultraviolet radiation on coral reef organisms

  • Banaszak, Anastazia T. (Unidad Academica Puerto Morelos, Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico) ;
  • Lesser, Michael P. (University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences)
  • Received : 2009.02.10
  • Accepted : 2009.06.01
  • Published : 2009.09.01

Abstract

Organisms living in shallow-water tropical coral reef environments are exposed to high UVR irradiances due to the low solar zenith angles (the angle of the sun from the vertical), the natural thinness of the ozone layer over tropical latitudes, and the high transparency of the water column. The hypothesis that solar ultraviolet radiation (UVR, 290-400 nm) is an important factor that affects the biology and ecology of coral reef organisms dates only to about 1980. It has been previously suggested that increased levels of biologically effective ultraviolet B radiation (UVB, 290-320 nm), which is the waveband primarily affected by ozone depletion, would have relatively small effects on corals and coral reefs and that these effects might be observed as changes in the minimum depths of occurrence of important reef taxa such as corals. This conclusion was based on predictions of increases in UVR as well as its attenuation with depth using the available data on UVR irradiances, ozone levels, and optical properties of the water overlying coral reefs. Here, we review the experimental evidence demonstrating the direct and indirect effects of UVR, both UVB and ultraviolet A (UVA, 320-400 nm) on corals and other reef associated biota, with emphasis on those studies conducted since 1996. Additionally, we re-examine the predictions made in 1996 for the increase in UVB on reefs with currently available data, assess whether those predictions were reasonable, and look at what changes might occur on coral reefs in the future as the multiple effects (i.e. increased temperature, hypercapnia, and ocean acidification) of global climate change continue.

Keywords

References

  1. E. G. Nisbet and N. H. Sleep, The habitat and nature of early life, Nature, 2001, 409, 1083-1091. https://doi.org/10.1038/35059210
  2. W. F. Vincent and P. J. Neale, Mechanisms of UV damage to aquatic organisms, in The Effects of UV Radiation in the Marine Environment, ed. S. de Mora, S. Demers and M. Vernet, Cambridge University Press, Cambridge, UK, 2000, pp. 149-176.
  3. C. S. Cockell, Biological effects of high ultraviolet radiation on early earth - A theoretical evaluation, J. Theor. Biol., 1998, 193, 717-729. https://doi.org/10.1006/jtbi.1998.0738
  4. L. J. Rothschild, The influence of UV radiation on protistan evolution, J. Eukaryot. Microbiol., 1999, 46, 548-555. https://doi.org/10.1111/j.1550-7408.1999.tb06074.x
  5. J. F. Kasting and J. L. Siefert, Life and the evolution of earth's atmosphere, Science, 2002, 296, 1066-1068. https://doi.org/10.1126/science.1071184
  6. S. Madronich, Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the earth's surface, Geophys. Res. Lett., 1992, 19, 37-40. https://doi.org/10.1029/91GL02954
  7. S. Madronich, R. L. McKenzie, M. M. Caldwell and L. O. Bjorn, Changes in ultraviolet radiation reaching the earth's surface in Environmental Effects of Ozone Depletion: 1994 Assessment, United Nations Environment Program, Nairobi, Kenya, 1994, pp. 1-22, (reprinted in Ambio, 1995, 24, 143-152).
  8. S. Madronich, R. L. McKenzie, L. O. Bjorn and M. M. Caldwell, Changes in biologically active radiation reaching the Earth's surface, J. Photochem. Photobiol., B, 1998, 46, 5-19. https://doi.org/10.1016/S1011-1344(98)00182-1
  9. R. L. McKenzie, L. O. Bjorn, A. Bais and M. Ilyasd, Changes in biologically active ultraviolet radiation reaching the Earth's surface, Photochem. Photobiol. Sci., 2003, 2, 5-15. https://doi.org/10.1039/b211155c
  10. Scientific Assessment of Ozone Depletion,Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva, 2006.
  11. R. F. Whitehead, S. J. de Mora and S. Demers, Enhanced UV radiation-a new problem for the marine environment, in The Effects of UV Radiation in the marine Environment, ed. S. de Mora, S. Demers and M. Vernet, Cambridge University Press, Cambridge, UK, 2000, pp. 1-34.
  12. P. Cutchis, A formula for comparing annual damaging ultraviolet (DUV) radiation doses at tropical and mid-latitude sites, in The Role of Solar Ultraviolet Radiation in Marine Ecosystems, ed. J. Calkins, Plenum Press, New York, 1982, pp. 213-228.
  13. A. E. S. Green, T. Sawada and E. P. Shettle, The middle ultraviolet reaching the ground, Photochem. Photobiol., 1974, 19, 251-259. https://doi.org/10.1111/j.1751-1097.1974.tb06508.x
  14. J. E. Frederick, H. E. Snell and E. K. Haywood, Solar ultraviolet radiation at the earth's surface., Photochem. Photobiol., 1989, 50, 443-450. https://doi.org/10.1111/j.1751-1097.1989.tb05548.x
  15. J. M. Shick, M. P. Lesser and P. L. Jokiel, Effects of ultraviolet radiation on corals and other coral reef organisms, Global Change Biol., 1996, 2, 527-545. https://doi.org/10.1111/j.1365-2486.1996.tb00065.x
  16. J. R. Herman, P. K. Bhartia, J. Ziemke, Z. Ahmad and D. Larko, UV-B increases (1979-1992) from decreases in total ozone., Geophys. Res. Lett., 1996, 23, 2117-2120. https://doi.org/10.1029/96GL01958
  17. F. S. Rowland, Stratospheric ozone depletion, Philos. Trans. R. Soc. London, Ser. B, 2006, 361, 769-790. https://doi.org/10.1098/rstb.2005.1783
  18. W. J. Randel and F. Wu, A stratospheric ozone profile data set for 1979-2005: Variability, trends, and comparisons with column ozone data, J. Geophys. Res., 2007, 112, D06313.
  19. B. G. Liepert, Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990., Geophys. Res. Lett., 2002, 29, 1421.
  20. R. T. Pinker, B. Zhang and E. G. Dutton, Do satellites detect trends in surface solar radiation?, Science, 2005, 308, 850-854. https://doi.org/10.1126/science.1103159
  21. M. Wild, H. Gilgen, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton, B. Forgan, A. Kllis, V. Russak and A. Tsetkov, From dimming to brightening: Decadal changes in solar radiation at Earth's surface, Science, 2005, 308, 847-850. https://doi.org/10.1126/science.1103215
  22. S. Wuttke, S. El Nagger, T. Bluszcz and O. Schrems, Ship-borne measurements of erythemal UV irradiance and ozone content in various climate zones, Photochem. Photobiol. Sci., 2007, 6, 1081-1088. https://doi.org/10.1039/b617602j
  23. J. R. Norris, Trends in upper-level cloud cover and surface divergence over the tropical Indo-Pacific Ocean between 1952 and 1997, J. Geophys. Res., 2005, 110, D21110.
  24. P. M. Udelhofen, P. Gies, C. Roy and W. J. Randel, Surface UV radiation over Australia, 1979-1992: Effects of ozone and cloud cover changes on variations of UV radiation, J. Geophys. Res., 1999, 104, 19135-19159. https://doi.org/10.1029/1999JD900306
  25. I. Masiri, M. Nunez and E. Weller, A 10-year climatology of solar radiation for the Great Barrier Reef: implications for recent mass coral bleaching events, Int. J. Remote Sens., 2008, 29, 4443-4462. https://doi.org/10.1080/01431160801930255
  26. P. J. Mumby, J. R. M. Chisholm, A. J. Edwards, S. Andrefouet and J. Jaubert, Cloudy weather may have saved Social Island reef corals during the 1998 ENSO event, Mar. Ecol. Prog. Ser., 2001, 222, 209-216.
  27. P. J. Matts, Solar ultraviolet radiation: definitions and terminology, Dermatol. Clin., 2006, 24, 1-8.
  28. D. H. Sliney, Radiometric quantities and units used in photobiology and photochemistry: recommendations of the Commission Internationale de l'Eclairage (International Commission on Illumination), Photochem. Photobiol., 2007, 83, 425-432. https://doi.org/10.1562/2006-11-14-RA-1081
  29. N. G. Jerlov, Ultra-violet radiation in the sea, Nature, 1950, 166, 111-112. https://doi.org/10.1038/166111a0
  30. R. C. Smith and K. S. Baker, Penetration of UV-B and biologically effective dose-rates in natural waters, Photochem. Photobiol., 1979, 29, 311-323. https://doi.org/10.1111/j.1751-1097.1979.tb07054.x
  31. E. M. Fleischmann, The measurement and penetration of ultraviolet radiation into tropical marine water, Limnol. Oceanogr., 1989, 34, 1623-1629. https://doi.org/10.4319/lo.1989.34.8.1623
  32. D. F. Gleason and G. M. Wellington, Ultraviolet radiation and coral bleaching, Nature, 1993, 365, 836-838. https://doi.org/10.1038/365836a0
  33. M. P. Lesser, C. Mazel, D. Phinney and Y. S. Yentsch, Light absorption and utilization by colonies of the congeneric hermatypic corals Montastraea faveolata and Montastraea cavernosa, Limnol. Oceanogr., 2000, 45, 76-86. https://doi.org/10.4319/lo.2000.45.1.0076
  34. M. Tedetti and R. Sempere, Penetration of ultraviolet radiation in the marine environment. A review, Photochem. Photobiol., 2006, 82, 389-397. https://doi.org/10.1562/2005-11-09-IR-733
  35. R. G. Zepp, G. C. Shank, E. Stabenau, K. W. Patterson, M. Cyterski, W. Fisher, E. Bartels and S. L. Anderson, Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter, Limnol. Oceanogr., 2008, 53, 1909-1922. https://doi.org/10.4319/lo.2008.53.5.1909
  36. J. T. O. Kirk, Optics of UV-B radiation in natural waters, Arch. Hydrobiol., 1994, 43, 1-16.
  37. A. T. Banaszak, M. P. Lesser, I. B. Kuffner and M. Ondrusek, Relationship between ultraviolet (UV) radiation and mycosporinelike amino acids (MAAs) in marine organisms, Bull. Mar. Sci., 1998, 63, 617-628.
  38. R. P. Dunne and B. E. Brown, Penetration of solar UVB radiation in shallow tropical waters and its potential biological effects on coral reefs; results from the central Indian Ocean and Andaman Sea, Mar. Ecol. Prog. Ser., 1996, 144, 109-118.
  39. M. P. Lesser and M. Y. Gorbunov, Diurnal and bathymetric changes in chlorophyll fluorescence yields of reef corals measured in situ with a fast repetition rate fluorometer, Mar. Ecol. Prog. Ser., 2001, 212, 69-77.
  40. M. P. Lesser, Depth-dependent photoacclimatization to solar ultraviolet radiation in the Caribbean coral Montastraea faveolata, Mar. Ecol. Prog. Ser., 2000, 192, 137-151.
  41. S. Maritorena and N. Guillocheau, Optical properties of water and spectral light absorption by living and non-living particles and by yellow substances in coral reef waters of French Polynesia, Mar. Ecol. Prog. Ser., 1996, 131, 245-255.
  42. D. B. Otis, K. L. Carder, D. C. English and J. E. Ivey, CDO Mtransport from the Bahamas Banks, Coral Reefs, 2004, 23, 152-160. https://doi.org/10.1007/s00338-003-0356-8
  43. R. Deckert and K. J. Michael, Lensing effect on underwater levels of UV radiation, J. Geophys. Res., 2006, 111, C05014.
  44. P. J. Mumby, W. Skirving, A. E. Strong, J. T. Hardy, E. F. LeDrew, E. J. Hochberg, R. P. Stumpf and L. T. David, Remote sensing of coral reefs and their physical environment, Mar. Pollut. Bull., 2004, 48, 219-228. https://doi.org/10.1016/j.marpolbul.2003.10.031
  45. J. Maina, V. Venus, T. R. McClanahan and M. Ateweberhan, Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models, Ecol. Model., 2008, 212, 180-199. https://doi.org/10.1016/j.ecolmodel.2007.10.033
  46. D.-P. Hader, H. D. Kumar, R. C. Smith and R. C. Worrest, Effects on aquatic ecosystems, J. Photochem. Photobiol., B, 1998, 46, 53-68. https://doi.org/10.1016/S1011-1344(98)00185-7
  47. R. P. Dunne, Polysulphone film as an underwater dosimeter for solar ultraviolet-B radiation in tropical latitudes, Mar. Ecol.Prog. Ser., 1999, 189, 53-63.
  48. P. W. Schouten, A. V. Parisi and D. J. Turnbull, Field calibrations of a long-term UV dosimeter for aquatic UVB exposures, J. Photochem. Photobiol., B, 2008, 91, 108-116. https://doi.org/10.1016/j.jphotobiol.2008.02.004
  49. L. A. Wilkens, Ultraviolet sensitivity in hyperpolarizing photoreceptors of the giant clam Tridacna, Nature, 1984, 309, 446-448. https://doi.org/10.1038/309446a0
  50. W. N. McFarland and E. R. Loew, Ultraviolet visual pigments in marine fishes of the family pomacentridae, VisionRes., 1994, 34, 1393-1396.
  51. S. Job and D. R. Bellwood, Ultraviolet photosensitivity and feeding in larval and juvenile coral reef fishes, Mar. Biol., 2007, 151, 495-503. https://doi.org/10.1007/s00227-006-0482-2
  52. U. E. Siebeck and N. J. Marshall, Potential ultraviolet vision in presettlement larvae and settled reef fish-A comparison across 23 families, Vision Res., 2007, 47, 2337-2352. https://doi.org/10.1016/j.visres.2007.05.014
  53. U. E. Siebeck, Communication in coral reef fish: The role of ultraviolet colour patterns in damselfish territorial behaviour, Anim. Behav., 2004, 68, 273-282. https://doi.org/10.1016/j.anbehav.2003.11.010
  54. W. C. Dunlap, D. Mc, B. Williams, B. E. Chalker and A. T. Banaszak, Biochemical photoadaptation in vision: U.V.-absorbing pigments in fish eye tissues, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1989, 93, 601-607. https://doi.org/10.1016/0305-0491(89)90383-0
  55. U. E. Siebeck and N. J. Marshall, Ocular media transmission of coral reef fish - Can coral reef fish see ultraviolet light?, Vision Res., 2001, 41, 133-149. https://doi.org/10.1016/S0042-6989(00)00240-6
  56. P. L. Jokiel and R. H. York, Jr, Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae, Bull. Mar. Sci., 1982, 32, 301-315.
  57. R. J. Kingsley, M. L. Corcoran, K. L. Krider and K. L. Kriechbaum, Thyroxine and vitamin D in the gorgonian Leptogorgia virgulata, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2001, 129, 897-907. https://doi.org/10.1016/S1095-6433(01)00354-3
  58. E. Hirose, S. Hirabayashi, K. Hori, F. Kasai and M. M. Watanabe, UV protection in the photosymbiotic ascidian Didemnum molle inhabiting different depths, Zoolog. Sci., 2006, 23, 57-63. https://doi.org/10.2108/zsj.23.57
  59. M. Fine, E. Banin, T. Israely, E. Rosenberg and Y. Loya, Ultraviolet radiation prevents bleaching in the mediterranean coral Oculina patagonica, Mar. Ecol. Prog. Ser., 2002, 226, 249-254.
  60. W. H. Jeffrey and M. D. Mitchell, Mechanisms of UV-induced DNA damage and response in marine microorganisms, Photochem. Photobiol., 1997, 65, 260-263. https://doi.org/10.1111/j.1751-1097.1997.tb08555.x
  61. E. Ehling-Schulz and S. Scherer, UV protection in cyanobacteria, Eur. J. Phycol., 1999, 34, 329-338. https://doi.org/10.1080/09670269910001736392
  62. R. P. Sinha, M. Klisch, A. Groniger and D.-P. Hader, Responses of aquatic algae and cyanobacteria to solarUV-B, Plant Ecol., 2001, 154, 219-236. https://doi.org/10.1023/A:1012986500543
  63. R. Sommaruga, The role of solar UV radiation in the ecology of alpine lakes, J. Photochem. Photobiol., B, 2001, 62, 35-42. https://doi.org/10.1016/S1011-1344(01)00154-3
  64. J. Rozema, L. O. Bjorn, J. F. Bornman, A. Gaberscik, D.-P. Hader, T. Trost, M. Germ, M. Klisch, A. Groniger, R. P. Sinha, M. Lebert, Y.-Y. He, R. Buffoni-Hall, N. V. J. De Bakker, J. Van De Staaij and B. B. Meijkamp, The role of UV-B radiation in aquatic and terrestrial ecosystems -An experimental and functional analysis of the evolution of UV-absorbing compounds, J. Photochem. Photobiol., B, 2002, 66, 2-12. https://doi.org/10.1016/S1011-1344(01)00269-X
  65. R. P. Sinha and D.-P. Hader, UV-induced DNA damage and repair: A review, Photochem. Photobiol. Sci., 2002, 1, 225-236. https://doi.org/10.1039/b201230h
  66. E. Litchman, P. J. Neale and A. T. Banaszak, Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: Photoprotection and repair, Limnol. Oceanogr., 2002, 47, 86-94. https://doi.org/10.4319/lo.2002.47.1.0086
  67. P. L. Jokiel, Solar ultraviolet radiation and coral reef epifauna, Science, 1980, 207, 1069-1071. https://doi.org/10.1126/science.207.4435.1069
  68. E. Vareschi and H. Fricke, Light responses of a scleractinian coral (Plerogyra sinuosa), Mar. Biol., 1986, 90, 395-402. https://doi.org/10.1007/BF00428563
  69. J. L. Torres, R. A. Armstrong, J. E. Corredor and F. Gilbes, Physiological responses of Acropora cervicornis to increased solar irradiance, Photochem. Photobiol., 2007, 83, 839-850. https://doi.org/10.1562/2006-09-01-RA-1025
  70. A. A. Roth, C. D. Clausen, P. Y. Yahiku, V. E. Clausen and W. W. Cox, Some effects of light on coral growth, Pacific Sci., 1982, 36, 65-81.
  71. P. W. Glynn, R. Imai, K. Sakai, Y. Nakano and K. Yamazato, Experimental responses of Okinawan (Ryukyu Islands, Japan) reef corals to high sea temperature and UV radiation, in Proceedings of the Seventh International Coral Reef Symposium, ed. R. H. Richmond, University of Guam Press, Mangilao, 1993, vol. 1, pp. 27-37.
  72. D. F. Gleason, Differential effects of ultraviolet radiation on green and brown morphs of the Caribbean coral Porites astreoides, Limnol. Oceanogr., 1993, 38, 1452-1463. https://doi.org/10.4319/lo.1993.38.7.1452
  73. O. Siebeck, Photoreactivation and depth-dependent UV tolerance in reef coral in the Great Barrier Reef/Australia, Naturwissenschaften, 1981, 68, 426-428. https://doi.org/10.1007/BF01079713
  74. O. Siebeck, Experimental investigation of UV tolerance in hermatypic corals (Scleractinia), Mar. Ecol. Prog. Ser., 1988, 43, 95-103.
  75. R. A. Kinzie, III, Effects of ambient levels of solar ultraviolet radiation on zooxanthellae and photosynthesis of the reef coral Montipora verrucosa, Mar. Biol., 1993, 116, 319-327. https://doi.org/10.1007/BF00350022
  76. J. H. Torregianai and M. P. Lesser, The effects of short-termexposures to ultraviolet radiation in the Hawaiian coral Montipora verrucosa, J. Exp. Mar. Biol. Ecol., 2007, 340, 194-203. https://doi.org/10.1016/j.jembe.2006.09.004
  77. J. M. Shick, M. P. Lesser, W. C. Dunlap, W. R. Stochaj, B. E. Chalker and J. Wu Won, Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma, Mar. Biol., 1995, 122, 41-51. https://doi.org/10.1007/BF00349276
  78. K. Masuda, M. Goto, T. Maruyama and S. Miyachi, Adaptation of solitary corals and their zooxanthellae to low light and UV radiation, Mar. Biol., 1993, 117, 685-692. https://doi.org/10.1007/BF00349781
  79. M. P. Lesser and J. M. Shick, Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity, Mar. Biol., 1989, 102, 243-255. https://doi.org/10.1007/BF00428286
  80. M. Ishikura, C. Kato and T. Maruyama, UV-absorbing substances in zooxanthellate and azooxanthellate clams, Mar. Biol., 1997, 128, 649-655. https://doi.org/10.1007/s002270050131
  81. M. L. Dionisio-Sese, T. Maruyama and S. Miyachi, Photosynthesis of Prochloron as affected by environmental factors, Mar. Biotechnol., 2001, 3, 74-79. https://doi.org/10.1007/s101260000062
  82. J. M. Shick, Solar UV and oxidative stress in algal-animal symbioses, in Frontiers of Photobiology, ed. A. Shima, M. Ichihashi, Y. Fujiwara and H. Takebe, Elsevier Science Publishers, Amsterdam, 1993, pp. 561-564.
  83. M. P. Lesser, Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates, Limnol. Oceanogr., 1996, 41, 271-283. https://doi.org/10.4319/lo.1996.41.2.0271
  84. G. Renger, H. J. Volker, R. Eckert, S. Fromme, S. Hohm-Veit and P. Graber, On the mechanism of Photosystem 2 deterioration by UV-B irradiation, Photochem. Photobiol., 1989, 49, 97-105.
  85. H. Tschiersch and E. Ohmann, Photoinhibition in Euglena gracilis: Involvement of reactive oxygen species., Planta, 1993, 191, 316-323.
  86. K. Asada and M. Takahashi, Production and scavenging of active oxygen in photosynthesis, in Photoinhibition, ed. D. J. Kyle, C. B. Osmond and C. J. Arntzen, Elsevier Science Publishers, Amsterdam, 1987, pp. 227-287.
  87. P. J. Neale, M. P. Lesser, J. J. Cullen and J. Goldstone, Detecting UV-induced inhibition of photosynthesis in Antarctic phytoplankton, Antarct. J. U. S., 1992, 27, 122-124.
  88. J. M. Shick, M. P. Lesser and W. R. Stochaj, Ultraviolet radiation and photooxidative stress in zooxanthellate Anthozoa: the sea anemone Phyllodiscus semoni and the octocoral Clavularia sp., Symbiosis, 1991, 10, 145-173.
  89. R. M. Tyrrell, UVA (320-380 nm) as an oxidative stress, in Oxidative Stress: Oxidants and Antioxidants, ed. H. Sies, Academic Press, San Diego, 1991, pp. 57-83.
  90. M. P. Lesser, Oxidative stress in marine environments: Biochemistry and physiological ecology, Annu. Rev. Physiol., 2006, 68, 253-278. https://doi.org/10.1146/annurev.physiol.68.040104.110001
  91. J. A. Dykens and J. M. Shick, Oxygen production by endosymbiotic algae controls superoxide dismutase activity in their animal host., Nature, 1982, 297, 579-580. https://doi.org/10.1038/297579a0
  92. M. Kuhl, Y. Cohen, T. Dalsgaard, B. B. Jorgensen and N. P. Revsbech, Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for $O_{2}$, pH and light., Mar. Ecol. Prog. Ser., 1995, 117, 159-172.
  93. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, 3rd edn, 1999.
  94. J. A. Dykens and J. M. Shick, Photobiology of the symbiotic sea anemone, Anthopleura elegantissima: defenses against photodynamic effects, and seasonal photoacclimatization, Biol. Bull., 1984, 167, 683-697. https://doi.org/10.2307/1541419
  95. M. P. Lesser, W. R. Stochaj, D. W. Tapley and J. M. Shick, Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen, Coral Reefs, 1990, 8, 225-232. https://doi.org/10.1007/BF00265015
  96. M. P. Lesser, Photobiology of natural populations of zooxanthellae from the sea anemone Aiptasia pallida: Assessment of the host's role in protection against ultraviolet radiation, Cytometry, 1989, 10, 653-658. https://doi.org/10.1002/cyto.990100522
  97. C. Ferrier-Pages, C. Richard, D. Forcioli, D. Allemand, M. Pichon and J. M. Shick, Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species, Biol. Bull., 2007, 213, 76-87. https://doi.org/10.2307/25066620
  98. R. B. Setlow, P. A. Swenson and W. L. Carrier, Thymine dimers and inhibition of DNA synthesis by ultraviolet radiation on cultured fish cells, Science, 1963, 142, 1464-1465. https://doi.org/10.1126/science.142.3598.1464
  99. A. G. J. Buma, P. Boelen and W. H. Jeffrey, UVR-induced DNA damage in aquatic organisms, in UV Effects in Aquatic Organisms and Ecosystems, ed. E. W. Helbling and H. Zagarese, Royal Society of Chemistry, Cambridge, U.K., 2003, pp. 291-327.
  100. A. G. J. Buma, E. J. Van Hannen, M. J. W. Veldhuis and W. W. C. Gieskes, UV-B induces DNA-damage and DNA-synthesis delay in the marine diatom Cyclotella sp., Sci. Mar., 1996, 60, 101-106.
  101. M. P. Lesser and J. H. Farrell, Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress, Coral Reefs, 2004, 23, 367-377. https://doi.org/10.1007/s00338-004-0392-z
  102. G. Evans and T. Littlewood, A matter of life and cell death., Science, 1998, 281, 1317-1322. https://doi.org/10.1126/science.281.5381.1317
  103. D. F. Gleason, Ultraviolet radiation and coral communities, in Ecosystems, Evolution and Ultraviolet Radiation, ed. C. S. Cockell and A. R. Blaustein, Springer, New York, USA, 2001, pp. 118-149.
  104. A. T. Banaszak, B. N. Ayala-Schiaffino, A. Rodriguez-Roman, S. Enriquez and R. Iglesias-Prieto, Response of Millepora alcicornis (Milleporina: Milleporidae) to two bleaching events at PuertoMorelos reef, Mexican Caribbean, Rev. Biol. Trop., 2003, 51(Suppl. 4), 57-66.
  105. J. D. Regan, W. L. Carrier, H. Gucinski, B. L. Olla, H. Yoshida, R. K. Fujimura and R. I. Wicklund, DNA as a solar dosimeter in the ocean, Photochem. Photobiol., 1992, 56, 35-42. https://doi.org/10.1111/j.1751-1097.1992.tb09599.x
  106. W. H. Jeffrey, P. Aas, M. M. Lyons, R. B. Coffin, R. J. Pledger and D. L. Mitchell, Ambient solar radiation-induced photodamage in marine bacterioplankton, Photochem. Photobiol., 1996, 64, 419-427. https://doi.org/10.1111/j.1751-1097.1996.tb03086.x
  107. P. Boelen, A. F. Post, M. J. W. Veldhuis and A. G. J. Buma, Diel patterns of UVBR-induced DNA damage in picoplankton size fractions from the Gulf of Aqaba, Red Sea, Microb. Ecol., 2002, 44, 164-174. https://doi.org/10.1007/s00248-002-1002-7
  108. W. H. Jeffrey, R. J. Pledger, P. Aas, S. Hager, R. B. Coffin, R. VonHaven and D. L. Mitchell, Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation, Mar. Ecol. Prog. Ser., 1996, 137, 283-291.
  109. P. M. Visser, E. Snelder, A. J. Kop, P. Boelen, A. G. J. Buma and F. C. Van Duyl, Effects of UV radiation on DNA photodamage and production in bacterioplankton in the coastal Caribbean Sea, Aquat. Microb. Ecol., 1999, 20, 49-58.
  110. P. Conan, F. Joux, J.-P. Torreton, M. Pujo-Pay, T. Douki, E. Rochelle-Newall and X.Mari, Effect of solar ultraviolet radiation on bacterio-and phytoplankton activity in a large coral reef lagoon (southwest New Caledonia), Aquat. Microb. Ecol., 2008, 52, 83-98.
  111. P. M. Visser, J. J. Poos, B. B. Scheper, P. Boelen and F. C. Van Duyl, Diurnal variations in depth profiles of UV-induced DNA damage and inhibition of bacterioplankton production in tropical coastal waters, Mar. Ecol. Prog. Ser., 2002, 228, 25-33.
  112. M. M. Lyons, P. Aas, J. D. Pakulski, L. VanWaasbergen, R. V. Miller, D. L. Mitchell andW. H. Jeffrey, DNA damage induced by ultraviolet radiation in coral-reef microbial communities, Mar. Biol., 1998, 130, 537-543. https://doi.org/10.1007/s002270050274
  113. S. Anderson, R. Zepp, J. Machula, D. Santavy, L. Hansen and D. Mueller, Indicators of UV exposure in corals and their relevance to global climate change and coral bleaching, Hum. Ecol. Risk Assess., 2001, 7, 1271-1282. https://doi.org/10.1080/20018091094998
  114. B. Rinkevich, N. Avishai and C. Rabinowitz, UV incites diverse levels of DNA breaks in different cellular components of a branching coral species, J. Exp. Biol., 2005, 208, 843-848. https://doi.org/10.1242/jeb.01496
  115. A. T. Banaszak, Optimization of DNA extraction froma scleractinian coral for the detection of thymine dimers by immunoassay, Photochem. Photobiol., 2007, 83, 833-838. https://doi.org/10.1111/j.1751-1097.2007.00083.x
  116. W. Harm, Biological Effects of Ultraviolet Radiation, Cambridge University Press, Cambridge, 1980.
  117. D. L. Mitchell and D. Karentz, The induction and repair of DNA photodamage in the environment, in Environmental UV Photobiology, ed. A. R. Young, L. O. Bjorn, J. Moan andW. Nultsch, Plenum Press, New York, 1993, pp. 345-377.
  118. D. B. Carlini and J. D. Regan, Photolyase activities of Elysia tuca, Bursatella leachii, and Haminaea antillarum (Mollusca: Opisthobranchia), J. Exp. Mar. Biol. Ecol., 1995, 189, 219-232. https://doi.org/10.1016/0022-0981(95)00195-W
  119. S. E. Edge, M. B. Morgan, D. F. Gleason and T. W. Snell, Development of a coral cDNA array to examine gene expression profiles in Montastraea faveolata exposed to environmental stress, Mar. Pollut. Bull., 2005, 51, 507-523. https://doi.org/10.1016/j.marpolbul.2005.07.007
  120. M. K. Desalvo, C. Voolstra, S. Sunagawa, J. A. Schwarz, J. H. Stillman, M. A. Coffroth, A. M. Szmant and M. Medina, Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata, Mol. Ecol., 2008, 17, 3952-3971. https://doi.org/10.1111/j.1365-294X.2008.03879.x
  121. J. A. Schwarz, P. B. Brokstein, C. Voolstra, A. Y. Terry, D. J. Miller, A. M. Szmant, M. A. Coffroth and M. Medina, Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata., BMC Genomics, 2008, 9, 1-16. https://doi.org/10.1186/1471-2164-9-1
  122. M. P. Lesser, Experimental biology of coral reef ecosystems, J. Exp. Mar. Biol. Ecol., 2004, 300, 217-252. https://doi.org/10.1016/j.jembe.2003.12.027
  123. D. Epel, K. Hemela, J. M. Shick and C. Patton, Developing in the floating world: defenses of eggs and embryos against damage from UV radiation, Am. Zool., 1999, 39, 271-278.
  124. D. Epel, Protection of DNA during early development: adaptations and evolutionary consequences, Evol. Dev., 2003, 5, 83-88. https://doi.org/10.1046/j.1525-142X.2003.03013.x
  125. A. Hamdoun and D. Epel, Embryo stability and vulnerability in an always changing world, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 1745-1750. https://doi.org/10.1073/pnas.0610108104
  126. J. L. Torres, R. A. Armstrong and E. Weil, Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcast species Acropora cervicornis Lamarck, J. Exp. Mar. Biol. Ecol., 2008, 358, 39-45. https://doi.org/10.1016/j.jembe.2008.01.022
  127. K. A. Hovel and S. G. Morgan, Susceptibility of estuarine crab larvae to ultraviolet radiation, J. Exp. Mar. Biol. Ecol., 1999, 237, 107-125. https://doi.org/10.1016/S0022-0981(98)00221-4
  128. G. M. Wellington and W. K. Fitt, Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals, Mar. Biol., 2003, 143, 1185-1192. https://doi.org/10.1007/s00227-003-1150-4
  129. D. F. Gleason and G. M. Wellington, Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient, Mar. Biol., 1995, 123, 693-703. https://doi.org/10.1007/BF00349112
  130. N. E. Chadwick-Furman, Reef coral diversity and global change, Global Change Biol., 1996, 2, 559-568. https://doi.org/10.1111/j.1365-2486.1996.tb00067.x
  131. D. F. Gleason, P. J. Edmunds and R. D. Gates, Ultraviolet radiation effects on behavior and recruitment of larvae from the reef coral Porites astreoides, Mar. Biol., 2006, 148, 503-512. https://doi.org/10.1007/s00227-005-0098-y
  132. I. B. Kuffner, Effects of ultraviolet (UV) radiation on larval settlement of the reef coral Pocillopora damicornis., Mar. Ecol. Prog. Ser., 2001, 217, 251-261.
  133. D. Zeevi-Ben-Yosef and Y. Benayahu, Synergistic effects of UVR and temperature on the survival of azooxanthellate and zooxanthellate early developmental stages of soft corals, Bull. Mar. Sci., 2008, 83, 401-414.
  134. O. Hoegh-Guldberg, Climate change, coral bleaching and the future of the world's coral reefs, Mar. Freshwat. Res., 1999, 50, 839-866. https://doi.org/10.1071/MF99078
  135. V. J. Harriott, Mortality rates of scleractinian before and during a mass bleaching event., Mar. Ecol. Prog. Ser., 1985, 21, 81-88.
  136. R. P. Dunne, Radiation and coral bleaching, Nature, 1994, 368, 697.
  137. C. Goenaga, V. P. Vicente and R. A. Armstrong, Bleaching induced mortalities in reef corals from La Parguera, Puerto Rico: a precursor of change in the community structure of coral reefs-, Caribb. J. Sci., 1989, 25, 59-65.
  138. P. L. Jokiel and S. L. Coles, Response of Hawaiian and other Indo-Pacific reef corals to elevated temperatures, Coral Reefs, 1990, 8, 155-162. https://doi.org/10.1007/BF00265006
  139. M. P. Lesser, Oxidative stress causes coral bleaching during exposure to elevated temperatures, Coral Reefs, 1997, 16, 187-192. https://doi.org/10.1007/s003380050073
  140. L. D'Croz, J. L. Mate and J. E. Oke, Responses to elevated sea water temperature and UV radiation in the coral Porites lobata from upwelling and non-upwelling environments on the Pacific coast of Panama, Bull. Mar. Sci., 2001, 69, 203-214.
  141. A. F. Drohan, D. A. Thoney and A. C. Baker, Synergistic effect of high temperature and ultraviolet-B radiation on the gorgonian Eunicea tourneforti (Octocorallia: Alcyonacea: Plexauridae)., Bull. Mar. Sci., 2005, 77, 257-266.
  142. L. D. D'Croz and J. L. Mate, The role of water temperature and UV radiation in the recovery of the experimentally bleached coral Pocillopora damicorni from the eastern Pacific Ocean (Panama), Proc. 9th Int. Coral Reef Symp., 2000, 2, 1111-1116.
  143. T. D. Ainsworth, O. Hoegh-Guldberg, S. F. Heron, W. I. Skirving and W. Leggatt, Early cellular changes are indicators of pre-bleaching thermal stress in the coral host., J. Exp. Mar. Biol. Ecol., 2008, 364, 63-71. https://doi.org/10.1016/j.jembe.2008.06.032
  144. W. K. Fitt, R. D. Gates, O. Hoegh-Guldberg, J. C. Bythell, A. Jatkar, A. G. Grottoli, M. Gomez, P. Fisher, T. C. Lajuenesse, O. Pantos, R. Iglesias-Prieto, D. J. Franklin, L. J. Rodrigues, J. M. Torregiani, R. van Woesik and M. P. Lesser, Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to shorttermthermal stress: The host does matter in determining the tolerance of corals to bleaching., J. Exp. Mar. Biol. Ecol., 2009, 373, 102-110. https://doi.org/10.1016/j.jembe.2009.03.011
  145. P. J. Neale, Spectral weighting functions for quantifying effects of ultraviolet radiation in marine ecosystems, in The Effects of UV Radiation in the Marine Environment, ed. S. De Mora, S. Demers and M. Vernet, Cambridge University Press, Cambridge, UK, 2000, pp. 72-100.
  146. R. D. Rundel, Action spectra and estimation of biologically effective UV radiation., Physiol. Plant., 1983, 58, 360-366. https://doi.org/10.1111/j.1399-3054.1983.tb04195.x
  147. P. Halldal, Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia, Biol. Bull., 1968, 134, 411-424. https://doi.org/10.2307/1539860
  148. M. P. Lesser and S. Lewis, Action spectrum for the effects of UV radiation on photosynthesis in the hermatypic coral Pocillopora damicornis, Mar. Ecol. Prog. Ser., 1996, 134, 171-177.
  149. P. L. Jokiel, M. P. Lesser and M. E. Ondrusek, UV absorbing compounds in the coral Pocillopora damicornis: Effects of light, water flow, and UV radiation., Limnol. Oceanogr., 1997, 42, 1468-1473. https://doi.org/10.4319/lo.1997.42.6.1468
  150. R. B. Setlow and J. K. Setlow, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis., Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3363-3366. https://doi.org/10.1073/pnas.71.9.3363
  151. S. Enriquez, E. R.Mendez and R. Iglesias-Prieto, Multiple scattering on coral skeletons enhances light absorption by symbiotic algae., Limnol. Oceanogr., 2005, 50, 1025-1032. https://doi.org/10.4319/lo.2005.50.4.1025
  152. W. C. Dunlap and J. M. Shick, Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: A biochemical and environmental perspective, J. Phycol., 1998, 34, 418-430. https://doi.org/10.1046/j.1529-8817.1998.340418.x
  153. W. C. Dunlap, Sunscreens, oxidative stress and antioxidant functions in marine organisms of the Great Barrier Reef, Redox Rep., 1999, 4, 301-306. https://doi.org/10.1179/135100099101535142
  154. R. P. Sinha, M. Klisch, A. Groniger and D.-P. Hader, Ultravioletabsorbing/ screening substances in cyanobacteria, phytoplankton and macroalgae, J. Photochem. Photobiol., B, 1998, 47, 83-94. https://doi.org/10.1016/S1011-1344(98)00198-5
  155. J. M. Shick, W. C. Dunlap and G. R. Buettner, Ultraviolet (UV) protection in marine organisms II. Biosynthesis, accumulation, and sunscreening function ofmycosporine-like amino acids, Free Radicals Chem., Biol. Med., 2000, 215-228.
  156. J. M. Shick and W. C. Dunlap, Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms, Annu. Rev. Physiol., 2002, 64, 223-262. https://doi.org/10.1146/annurev.physiol.64.081501.155802
  157. A. T. Banaszak, Photoprotective physiological and biochemical responses of aquatic organisms, in UV Effects in Aquatic Organisms and Ecosystems, ed. E.W. Helbling and H. Zagarese, Royal Society of Chemistry, Cambridge, UK, 2003, pp. 329-356.
  158. T. Rezanka, M. Temina, A. G. Tolstikov and V. M. Dembitsky, Natural microbial UV radiation filters - Mycosporine-like amino acids, Folia Microbiol., 2004, 49, 339-352.
  159. S. P. Singh, M. Klisch, R. P. Sinha and D.-P. Hader, Effects of abiotic stressors on synthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena viriabilis PCC 7937, Photochem. Photobiol., 2008, 84, 1500-1505. https://doi.org/10.1111/j.1751-1097.2008.00376.x
  160. R. P. Sinha and D.-P. Hader, UV-protectants in cyanobacteria, Plant Sci., 2008, 174, 278-289. https://doi.org/10.1016/j.plantsci.2007.12.004
  161. J. H. Drollet, P. Glaziou and P. M. V. Martin, A study of mucus from the solitary coral Fungia fungites (Scleractinia: Fungiidae) in relation to photobiological UV adaptation, Mar. Biol., 1993, 115, 263-266. https://doi.org/10.1007/BF00346343
  162. J. H. Drollet, T. Teai, M. Faucon and P. M. V. Martin, Field study of compensatory changes in UV-absorbing compounds in the mucus of the solitary coral Fungia repanda (Scleractinia:Fungiidae) in relation to solar UV radiation, sea-water temperature, and other coincident physico-chemical parameters, Mar. Freshwat. Res., 1997, 48, 329-333. https://doi.org/10.1071/MF96087
  163. T. Teai, J. H. Drollet, J.-P. Bianchini, A. Cambon and P. M. V. Martin, Occurrence of ultraviolet radiation-absorbing mycosporinelike amino acids in coralmucus and whole corals of French Polynesia, Mar. Freshwat. Res., 1998, 49, 127-132. https://doi.org/10.1071/MF97051
  164. A. T. Banaszak and R. K. Trench, Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses. I. Response, of the algal symbionts in culture and in hospite, J. Exp. Mar. Biol. Ecol., 1995, 194, 213-232. https://doi.org/10.1016/0022-0981(95)00072-0
  165. A. T. Banaszak and R. K. Trench, Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses. II. The, synthesis of mycosporine-like amino acids in response to exposure to UV in Anthopleura elegantissima and Cassiopeia xamachana., J. Exp. Mar. Biol. Ecol., 1995, 194, 233-250. https://doi.org/10.1016/0022-0981(95)00073-9
  166. H. Taira, J. I. Goes, H. R. Gomes, K. Yabe and S. Taguchi, Photoinduction of mycosporine-like amino acids and cell volume increases by ultraviolet radiation in the marine dinoflagellate Scrippsiella sweeneyae, Plankton Biol. Ecol., 2004, 51, 82-94.
  167. C. M. Leach, Ultraviolet-absorbing substances associated with lightinduced sporulation in fungi, Can. J. Bot., 1965, 43, 185-200. https://doi.org/10.1139/b65-024
  168. E. J. Trione, C. M. Leach and J. T. Mutch, Sporogenic substances isolated from fungi, Nature, 1966, 212, 163-164. https://doi.org/10.1038/212163a0
  169. K. Shibata, Pigment and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef, Plant Cell Physiol., 1969, 10, 325-335.
  170. W. C. Dunlap and B. E. Chalker, Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian, Coral Reefs, 1986, 5, 155-159. https://doi.org/10.1007/BF00298182
  171. N. Arpin and M. L. Bouillant, Light and mycosporines, in The Fungal Spore, Morphogenetic Controls, ed. G. Turian and H. R. Hohl, Academic Press, London, 1981, pp. 435-454.
  172. W. M. Bandaranayake, Mycosporines: Are they nature's sunscreens-, Nat. Prod. Rep., 1998, 15, 159-172. https://doi.org/10.1039/a815159y
  173. R. Bentley, The shikimate pathway - A metabolic tree with many branches, Crit. Rev. Biochem. Mol. Biol., 1990, 25, 307-384. https://doi.org/10.3109/10409239009090615
  174. M. Tevini and A. H. Teramura, UV-B effects on terrestrial plants, Photochem. Photobiol., 1989, 50, 479-487. https://doi.org/10.1111/j.1751-1097.1989.tb05552.x
  175. A. Starcevic, W. C. Dunlap, J. M. Shick, D. Hranueli, J. Cullum and P. F. Long, Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins., Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 2533-2537. https://doi.org/10.1073/pnas.0707388105
  176. J. M. Shick, The continuity and intensity of ultraviolet irradiation affect the kinetics of biosynthesis, accumulation, and conversion of mycosporine-like amino acids (MAAs) in the coral Stylophora pistillata, Limnol. Oceanogr., 2004, 49, 442-458. https://doi.org/10.4319/lo.2004.49.2.0442
  177. A. T. Banaszak, M. G. Barba Santos, T. C. LaJeunesse and M. P. Lesser, The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean, J. Exp. Mar. Biol. Ecol., 2006, 337, 131-146. https://doi.org/10.1016/j.jembe.2006.06.014
  178. A. Portwich and F. Garcia-Pichel, Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp. strain PCC 6912, Phycologia, 2003, 42, 384-392. https://doi.org/10.2216/i0031-8884-42-4-384.1
  179. J. M. Shick, S. Romaine-Lioud, C. Ferrier-Pages and J.-P. Gattuso, Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates, Limnol. Oceanogr., 1999, 44, 1667-1682. https://doi.org/10.4319/lo.1999.44.7.1667
  180. A. I. Callone, M. Carignan, N. G. Montoya and J. I. Carreto, Biotransformation of mycosporine like amino acids (MAAs) in the toxic dinoflagellate Alexandrium tamarense, J. Photochem. Photobiol., B, 2006, 84, 204-212. https://doi.org/10.1016/j.jphotobiol.2006.03.001
  181. J. M. Shick, C. Ferrier-Pages, R. Grover and D. Allemand, Effects of starvation, ammonium concentration, and photosynthesis on theUVdependent accumulation of mycosporine-like amino acids (MAAs) in the coral Stylophora pistillata, Mar. Ecol. Prog. Ser., 2005, 295, 135-156.
  182. A. Portwich and F. Garcia-Pichel, A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912, Photochem. Photobiol., 2000, 71, 493-498. https://doi.org/10.1562/0031-8655(2000)071<0493:ANPUPI>2.0.CO;2
  183. L. A. Franklin, G. Krabs and R. Kuhlenkamp, Blue light and UVA radiation control the synthesis of mycosporine-like amino acids in Chondrus crispus (Florideophyceae), J. Phycol., 2001, 37, 257-270. https://doi.org/10.1046/j.1529-8817.2001.037002257.x
  184. G. Krabs, M. Watanabe and C. Wiencke, A monochromatic action spectrum for the photoinduction of the UV-absorbing mycosporinelike amino acid shinorine in the red alga Chondrus crispus, Photochem. Photobiol., 2004, 79, 515-519. https://doi.org/10.1562/2003-12-14-RA.1
  185. A. Portwich and F. Garcia-Pichel, Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC 6912, Arch. Microbiol., 1999, 172, 187-192. https://doi.org/10.1007/s002030050759
  186. J. I. Carreto, M. O. Carignan and N. G. Montoya, A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms, Mar. Biol., 2005, 146, 237-252. https://doi.org/10.1007/s00227-004-1447-y
  187. M. Volkmann and A. A. Gorbushina, A broadly applicable method for extraction and characterization ofmycosporines andmycosporinelike amino acids of terrestrial, marine and freshwater origin, FEMS Microbiol. Lett., 2006, 255, 286-295. https://doi.org/10.1111/j.1574-6968.2006.00088.x
  188. K. Whitehead and J. I. Hedges, Analysis of mycosporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometry, Mar. Chem., 2002, 80, 27-39. https://doi.org/10.1016/S0304-4203(02)00096-8
  189. K. Whitehead and J. I. Hedges, Electrospray ionization tandem mass spectrometric and electron impact mass spectrometric characterization of mycosporine-like amino acids, Rapid Commun. Mass Spectrom., 2003, 17, 2133-2138. https://doi.org/10.1002/rcm.1162
  190. K. H. M. Cardozo, V. M. Carvalho, E. Pinto and P. Colepicolo, Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry, Rapid Commun. Mass Spectrom., 2006, 20, 253-258. https://doi.org/10.1002/rcm.2305
  191. N. L. Adams, J. M. Shick and W. C. Dunlap, Selective accumulation of mycosporine-like amino acids in ovaries of the green sea urchin Strongylocentrotus droebachiensis is not affected by ultraviolet radiation, Mar. Biol., 2001, 138, 281-294. https://doi.org/10.1007/s002270000464
  192. C. Balny, S. S. Brody and G. Hui-Bon-Hoa, Absorption and fluorescence spectra of Chlorophyll a in polar solvents as a function of temperature., Photochem. Photobiol., 1969, 9, 445-454. https://doi.org/10.1111/j.1751-1097.1969.tb07312.x
  193. M. Volkmann, A. A. Gorbushina, L. Kedar and A. Oren, Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, froma halophilic cyanobacterium (Euhalothece sp.), FEMS Microbiol. Lett., 2006, 258, 50-54. https://doi.org/10.1111/j.1574-6968.2006.00203.x
  194. R. P. Sinha, S. P. Singh and D.-P. Hader, Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals, J. Photochem. Photobiol., B, 2007, 89, 29-35. https://doi.org/10.1016/j.jphotobiol.2007.07.006
  195. U. Karsten, T. Sawall and C.Wiencke, A survey of the distribution of UV-absorbing substances in tropical macroalgae, Phycol. Res., 1998, 46, 271-279.
  196. T. Teai, J. H. Drollet, J.-P. Bianchini, A. Cambon and P. M. V. Martin, Widespread occurrence of mycosporine-like amino acid compounds in scleractinians from French Polynesia, Coral Reefs, 1997, 16, 169-176. https://doi.org/10.1007/s003380050071
  197. J. P. Zamzow and G. S. Losey, Ultraviolet radiation absorbance by coral reef fish mucus: Photo-protection and visual communication, Environ. Biol. Fishes, 2002, 63, 41-47. https://doi.org/10.1023/A:1013846816869
  198. J. P. Zamzow and U. E. Siebeck, Ultraviolet absorbance of the mucus of a tropical damselfish: Effects of ontogeny, captivity and disease, J. Fish Biol., 2006, 69, 1583-1594. https://doi.org/10.1111/j.1095-8649.2006.01219.x
  199. M. J. Eckes, U. E. Siebeck, S. Dove and A. S. Grutter, Ultraviolet sunscreens in reef fish mucus, Mar. Ecol. Prog. Ser., 2008, 353, 203-211.
  200. F. Z. Muszynski, A. Bruckner, R. A. Armstrong, J. M. Morell and J. E. Corredor, Within-colony variations of UV absorption in a reef building coral, Bull. Mar. Sci., 1998, 63, 589-594.
  201. I. Yakovleva and M. Hidaka, Diel fluctuations of mycosporine-like amino acids in shallow-water scleractinian corals, Mar. Biol., 2004, 145, 863-873. https://doi.org/10.1007/s00227-004-1384-9
  202. D. Zeevi Ben-Yosef, Y. Kashman and Y. Benayahu, Response of the soft coral Heteroxenia fuscescens to ultraviolet radiation regimes as reflected by mycosporine-like amino acid biosynthesis, Mar. Ecol., 2006, 27, 219-228. https://doi.org/10.1111/j.1439-0485.2006.00111.x
  203. D. Zeevi Ben-Yosef, Y. Kashman and Y. Benayahu, Mycosporine-like amino acids in azooxanthellate and zooxanthellate early developmental stages of the soft coral Heteroxenia fuscescens, J. Exp. Mar. Biol. Ecol., 2008, 355, 12-17. https://doi.org/10.1016/j.jembe.2007.11.010
  204. I. M. Yakovleva and A. H. Baird, Ontogenetic change in the abundance of mycosporine-like amino acids in non-zooxanthellate coral larvae, Coral Reefs, 2005, 24, 443-452. https://doi.org/10.1007/s00338-005-0005-5
  205. M. L. Dionisio-Sese, M. Ishikura, T. Maruyama and S.Miyachi, UVabsorbing substances in the tunic of a colonial ascidian protect its symbiont, Prochloron sp. fromdamage by UV-B radiation, Mar. Biol., 1997, 128, 455-461. https://doi.org/10.1007/s002270050112
  206. E. Hirose, K. Ohtsuka, M. Ishikura and T. Maruyama, Ultraviolet absorption in ascidian tunic and ascidian-Prochloron symbiosis, J. Mar. Biol. Assoc. U. K., 2004, 84, 789-794. https://doi.org/10.1017/S0025315404009956h
  207. T. Maruyama, E. Hirose and M. Ishikura, Ultraviolet-light-absorbing tunic cells in didemnid ascidians hosting a symbiotic photo-oxygenic prokaryote, Prochloron, Biol. Bull., 2003, 204, 109-113. https://doi.org/10.2307/1543546
  208. F. R. Conde, M. S. Churio and C. M. Previtali, The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution, J. Photochem. Photobiol., B, 2000, 56, 139-144. https://doi.org/10.1016/S1011-1344(00)00066-X
  209. R. P. Sinha, M. Klisch, A. Groniger and D.-P. Hader, Mycosporinelike amino acids in the marine red alga Gracilaria cornea - Effects of UV and heat, Environ. Exp. Bot., 2000, 43, 33-43. https://doi.org/10.1016/S0098-8472(99)00043-X
  210. K. Whitehead and J. I. Hedges, Photodegradation and photosensitization of mycosporinelike amino acids., J. Photochem. Photobiol., B, 2005, 80, 115-121. https://doi.org/10.1016/j.jphotobiol.2005.03.008
  211. W. C. Dunlap, B. E. Chalker, W. M. Bandaranayake and J. J. Wu Won, Nature's sunscreen from the Great Barrier Reef, Australia, Int. J. Cosmet. Sci., 1998, 20, 41-51. https://doi.org/10.1046/j.1467-2494.1998.171734.x
  212. C. Oyamada, M. Kaneniwa, K. Ebitani, M. Murata and K. Ishihara, Mycosporine-like amino acids extracted from scallop (Patinopecten yessoensis) ovaries: UV protection and growth stimulation activities on human cells., Mar. Biotechnol., 2008, 10, 141-150. https://doi.org/10.1007/s10126-007-9043-z
  213. F. R. Conde, M. O. Carignan, M. S. Churio and J. I. Carreto, In Vitro cis-trans photoisomerization of Palythene andUsujirene. Implications on the In Vivo Transformation of Mycosporine-like Amino Acids, Photochem. Photobiol., 2003, 77, 146-150. https://doi.org/10.1562/0031-8655(2003)077<0146:IVCTPO>2.0.CO;2
  214. F. R. Conde, M. S. Churio and C. M. Previtali, The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution, Photochem. Photobiol. Sci., 2004, 3, 960-967. https://doi.org/10.1039/b405782a
  215. F. R. Conde, M. S. Churio and C. M. Previtali, Experimental study of the excited-state properties and photostability of themycosporine-like amino acid palythine in aqueous solution, Photochem. Photobiol. Sci., 2007, 6, 669-674. https://doi.org/10.1039/b618314j
  216. T. A. Moison and B. G. Mitchell, UV absorption by mycosporinelike amino acids in Phaeocystis antarctica Karsten induced by photosynthetically active radiation., Mar. Biol., 2001, 138, 217-227. https://doi.org/10.1007/s002270000424
  217. I. Laurion, F. Blouin and S. Roy, Packaging of mycosporine-like amino acids in dinoflagellates, Mar. Ecol. Prog. Ser., 2004, 279, 297-303.
  218. P. J. Neale, A. T. Banaszak and C. R. Jarriel, Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): Mycosporine-like amino acids protect against inhibition of photosynthesis, J. Phycol., 1998, 34, 928-938. https://doi.org/10.1046/j.1529-8817.1998.340928.x
  219. N. L. Adams and J. M. Shick, Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis, Photochem. Photobiol., 1996, 64, 149-158. https://doi.org/10.1111/j.1751-1097.1996.tb02435.x
  220. M. P. Lesser, T. M. Barry, M. D. Lamare and M. F. Barker, Biological weighting functions for DNA damage in sea urchin embryos exposed to ultraviolet radiation., J. Exp. Mar. Biol. Ecol., 2006, 328, 10-21. https://doi.org/10.1016/j.jembe.2005.06.010
  221. T. Misonou, J. Saitoh, S. Oshiba, Y. Tokitomo, M. Maegawa, Y. Inoue, H. Hori and T. Sakurai, UV-absorbing substance in the red alga Porphyra yezoensis (Bangiales, Rhodophyta) block thymine photodimer production, Mar. Biotechnol., 2003, 5, 194-200. https://doi.org/10.1007/s10126-002-0065-2
  222. W. C. Dunlap, B. E. Chalker and J. K. Oliver, Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B, absorbing compounds, J. Exp. Mar. Biol. Ecol., 1986, 104, 239-248. https://doi.org/10.1016/0022-0981(86)90108-5
  223. J. E. Corredor, A. W. Bruckner, F. Z. Muszynski, R. A. Armstrong, R. Garcia and J. M. Morell, UV-absorbing compounds in three species of Caribbean zooxanthellate corals: Depth distribution and spectral response, Bull. Mar. Sci., 2000, 67, 821-830.
  224. K. Michalek-Wagner, Seasonal and sex-specific variations in levels of photo-protecting mycosporine-like amino acids (MAAs) in soft corals, Mar. Biol., 2001, 139, 651-660.
  225. I. B. Kuffner, Effects of ultraviolet radiation and water motion on the reef coral Porites compressa Dana: A flume experiment, Mar. Biol., 2001, 138, 467-476. https://doi.org/10.1007/s002270000471
  226. I. B. Kuffner, Effects of ultraviolet radiation and water motion on the reef coral Porites compressa Dana: A transplantation experiment, J. Exp. Mar. Biol. Ecol., 2002, 270, 147-169. https://doi.org/10.1016/S0022-0981(02)00031-X
  227. K. Michalek-Wagner and B. L. Willis, Impacts of bleaching on the soft coral Lobophytum compactum. II. Biochemical, changes in adults and their eggs, Coral Reefs, 2001, 19, 240-246. https://doi.org/10.1007/PL00006959
  228. J. M. Shick, W. C. Dunlap, B. E. Chalker, A. T. Banaszak and T. K. Rosenzweig, Survey of ultraviolet radiation-absorbing mycosporinelike amino acids in organs of coral reef holothuroids., Mar. Ecol. Prog. Ser., 1992, 90, 139-148.
  229. D. S. Mason, F. Schafer, J. M. Shick and W. C. Dunlap, Ultraviolet radiation-absorbing mycosporine-like amino acids (MAAs) are acquired from their diet by medaka fish (Oryzias latipes) but not by SKH-1 hairless mice, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1998, 120, 587-598. https://doi.org/10.1016/S1095-6433(98)10069-7
  230. J. P. Zamzow, Effects of diet, ultraviolet exposure, and gender on the ultraviolet absorbance of fishmucus and ocular structures, Mar. Biol., 2004, 144, 1057-1064. https://doi.org/10.1007/s00227-003-1286-2
  231. R. Rowan and D. A. Powers, A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses, Science, 1991, 251, 1348-1351. https://doi.org/10.1126/science.251.4999.1348
  232. M. A. Coffroth and S. R. Santos, Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium, Protist, 2005, 156, 19-34. https://doi.org/10.1016/j.protis.2005.02.004
  233. A. T. Banaszak, T. C. LaJeunesse and R. K. Trench, The synthesis of mycosporine-like amino acids (MAAS) by cultured, symbiotic dinoflagellates, J. Exp. Mar. Biol. Ecol., 2000, 249, 219-233. https://doi.org/10.1016/S0022-0981(00)00192-1
  234. W. C. Dunlap and Y. Yamamoto, Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine., Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1995, 112, 105-114. https://doi.org/10.1016/0305-0491(95)00086-N
  235. H.-J. Suh, H.-W. Lee and J. Jung, Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiency, Photochem. Photobiol., 2003, 78, 109-113. https://doi.org/10.1562/0031-8655(2003)078<0109:MGPBSA>2.0.CO;2
  236. I. Yakovleva, R. Bhagooli, A. Takemura andM. Hidaka, Differential susceptibility to oxidative stress of two scleractinian corals: Antioxidant functioning of mycosporine-glycine, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2004, 139, 721-730. https://doi.org/10.1016/j.cbpc.2004.08.016
  237. A. Oren, Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria, Geomicrobiol. J., 1997, 14, 231-240. https://doi.org/10.1080/01490459709378046
  238. A. B. Mayfield and R. D. Gates, Osmoregulation in anthozoan-dinoflagellate symbiosis, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2007, 147, 1-10. https://doi.org/10.1016/j.cbpa.2006.12.042
  239. N. Korbee, F. L. Figueroa and J. Aguilera, Accumulation of mycosporine-like amino acids (MAAs): Biosynthesis, photocontrol and ecophysiological functions, Rev. Chil. Hist. Nat., 2006, 79, 119-132.
  240. N. K. Peinado, R. T. Abdala Diaz, F. L. Figueroa and E. W. Helbling, Ammonium and UV radiation stimulate the accumulation ofmycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina, J. Phycol., 2004, 40, 248-259. https://doi.org/10.1046/j.1529-8817.2004.03013.x
  241. A. Oren and N. Gunde-Cimerman, Mycosporines and mycosporinelike amino acids: UV protectants or multipurpose secondary metabolites-, FEMS Microbiol. Lett., 2007, 269, 1-10. https://doi.org/10.1111/j.1574-6968.2007.00650.x
  242. C. B. Cook and S. K. Davy, Are free amino acids responsible for the 'host factor' effects on symbiotic zooxanthellae in extracts of host tissue-, Hydrobiologia, 2001, 461, 71-78. https://doi.org/10.1023/A:1012785725378
  243. R. Catala-Stucki, Fluorescence effects from corals irradiated with ultra-violet rays, Nature, 1959, 183, 949.
  244. A. Logan, K. Halcrow and T. Tomascik, UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermuda, Bull. Mar. Sci., 1990, 46, 807-813.
  245. D. Schlichter, U. Meier and H. W. Fricke, Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores, Oecologia, 1994, 99, 124-131. https://doi.org/10.1007/BF00317092
  246. M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov and S. A. Lukyanov, Fluorescent proteins from nonbiolumninescent Anthozoa species., Nat. Biotechnol., 1999, 17, 969-973. https://doi.org/10.1038/13657
  247. R. Y. Tsein, The green fluorescent protein., Annu. Rev. Biochem., 1998, 67, 509-544. https://doi.org/10.1146/annurev.biochem.67.1.509
  248. S. Kawaguti, On the physiology of reef corals. VI. Study, on the pigments., Palao Trop. Biol. Station Studies, 1944, 2, 617-673.
  249. S. Kawaguti, Effect of the green fluorescent pigment on the productivity of reef corals, Micronesica, 1969, 5, 313.
  250. S. Kawaguti, Electron microscopy on symbiotic algae in reef corals, Pub. Seto Marine Biol. Lab., 1973, 20, 779-783.
  251. A. Salih, A. Larkum, G. Cox, M. Kuhl and O. Hoegh-Guldberg, Fluorescent pigments in corals are photoprotective, Nature, 2000, 408, 850-853. https://doi.org/10.1038/35048564
  252. C. M. Mazel, M. P. Lesser, M. Y. Gorbunov, T. M. Barry, J. H. Farrell, K. Wyman and P. G. Falkowski, Green-fluorescent proteins in Caribbean corals., Limnol. Oceanogr, 2003, 48, 402-411. https://doi.org/10.4319/lo.2003.48.1_part_2.0402
  253. S. G. Dove, O. Hoegh-Guldberg and S. Ranganathan, Major colour patterns of reef-building corals are due to a family of GFP-like proteins, Coral Reefs, 2001, 19, 197-204. https://doi.org/10.1007/PL00006956
  254. A. M. Gilmore, A. W. D. Larkum, A. Salih, S. Itoh, Y. Shibata, C. Bena, H. Yamasaki, M. Papina and R. Van Woesik, Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals., Photochem. Photobiol., 2003, 77, 515-523. https://doi.org/10.1562/0031-8655(2003)077<0515:STROTE>2.0.CO;2
  255. F. Bou-Abdallah, N. D. Chasteen and M. P. Lesser, Quenching of Superoxide Radicals by Green Fluorescent Protein., Biochim. Biophys. Acta, 2006, 1760, 1690-1695. https://doi.org/10.1016/j.bbagen.2006.08.014
  256. S. Dove, Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching., Mar. Ecol. Prog. Ser., 2004, 272, 99-116.
  257. S. Dove, J. C. Ortiz, S. Enriquez, M. Fine, P. Fisher, R. Iglesias-Prieto, D. Thornhill and O. Hoegh-Guldberg, Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress, Limnol. Oceanogr., 2006, 51, 1149-1158. https://doi.org/10.4319/lo.2006.51.2.1149
  258. C. Smith-Keune and S. Dove, Gene expression of a green fluorescent protein homolog as a marker of heat stress within a reef-building coral., Mar. Biotechnol., 2008, 10, 166-180. https://doi.org/10.1007/s10126-007-9049-6

Cited by

  1. Depth-dependent Effects of Ultraviolet Radiation on Survivorship, Oxidative Stress and DNA Damage in Sea Urchin (Strongylocentrotus droebachiensis) Embryos from the Gulf of Maine vol.86, pp.2, 2009, https://doi.org/10.1111/j.1751-1097.2009.00671.x
  2. Spatial variability of UVR attenuation and bio-optical factors in shallow coral-reef waters of Malaysia vol.29, pp.3, 2010, https://doi.org/10.1007/s00338-010-0618-1
  3. Photoacclimation mechanisms of corallimorpharians on coral reefs: Photosynthetic parameters of zooxanthellae and host cellular responses to variation in irradiance vol.394, pp.1, 2010, https://doi.org/10.1016/j.jembe.2010.07.007
  4. Photochemical Formation of Hydroxyl Radicals in Tissue Extracts of the Coral Galaxea fascicularis : Photochemistry and Photobiology vol.86, pp.6, 2009, https://doi.org/10.1111/j.1751-1097.2010.00802.x
  5. Effect of ultraviolet radiation on growth and percent settlement of larvalLytechinus variegatus(Echinodermata: Echinoidea) vol.55, pp.3, 2009, https://doi.org/10.1080/07924259.2011.573329
  6. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence vol.20, pp.14, 2009, https://doi.org/10.1111/j.1365-294x.2011.05153.x
  7. Mycosporine-Like Amino Acids from Coral Dinoflagellates vol.77, pp.24, 2011, https://doi.org/10.1128/aem.05870-11
  8. Effects of UV radiation on aquatic ecosystems and interactions with climate change vol.10, pp.2, 2009, https://doi.org/10.1039/c0pp90036b
  9. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks vol.10, pp.2, 2009, https://doi.org/10.1039/c0pp90037k
  10. Coral larvae: From gametes to recruits vol.408, pp.1, 2009, https://doi.org/10.1016/j.jembe.2011.07.025
  11. Attenuation coefficients of ultraviolet and photosynthetically active wavelengths in the waters of Heron Reef, Great Barrier Reef, Australia vol.63, pp.2, 2009, https://doi.org/10.1071/mf11106
  12. Effects of UV radiation on the growth, photosynthetic and photoprotective components, and reproduction of the Caribbean shallow-water coral Porites furcata vol.31, pp.4, 2009, https://doi.org/10.1007/s00338-012-0927-7
  13. Beyond climate change attribution in conservation and ecological research vol.16, pp.suppl1, 2009, https://doi.org/10.1111/ele.12098
  14. Impact of elevated UVB radiation on marine biota: a meta‐analysis vol.22, pp.1, 2009, https://doi.org/10.1111/j.1466-8238.2012.00784.x
  15. Seasonal Variations in the Subsurface Ultraviolet‐B on an Inshore Pacific Coral Reef Ecosystem vol.89, pp.5, 2009, https://doi.org/10.1111/php.12101
  16. Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things? vol.32, pp.1, 2009, https://doi.org/10.1007/s00338-012-0993-x
  17. Photosynthetic carbon fixation by tropical coral reef phytoplankton assemblages: a UVR perspective vol.28, pp.3, 2009, https://doi.org/10.4490/algae.2013.28.3.281
  18. Ultraviolet-B Wavelengths Regulate Changes in UV Absorption of Cleaner Fish Labroides dimidiatus Mucus vol.8, pp.10, 2009, https://doi.org/10.1371/journal.pone.0078527
  19. The engine of the reef: photobiology of the coral–algal symbiosis vol.5, pp.None, 2009, https://doi.org/10.3389/fmicb.2014.00422
  20. Repair of UV-induced DNA damage in shallow water colonial marine species vol.452, pp.None, 2009, https://doi.org/10.1016/j.jembe.2013.12.003
  21. Benthic N 2 fixation in coral reefs and the potential effects of human-induced environmental change vol.4, pp.9, 2014, https://doi.org/10.1002/ece3.1050
  22. Stresses and defense mechanisms in reef-building corals: genetic, physiological, and ecological perspectives vol.16, pp.1, 2009, https://doi.org/10.3755/jcrs.16.47
  23. Evolutionary History of the Live-Bearing Endemic Allotoca diazi Species Complex (Actinopterygii, Goodeinae): Evidence of Founder Effect Events in the Mexican Pre-Hispanic Period vol.10, pp.5, 2009, https://doi.org/10.1371/journal.pone.0124138
  24. Effects of sediments on the reproductive cycle of corals vol.100, pp.1, 2009, https://doi.org/10.1016/j.marpolbul.2015.08.021
  25. Comparative genomics explains the evolutionary success of reef-forming corals vol.5, pp.None, 2016, https://doi.org/10.7554/elife.13288
  26. Photosynthesis and Growth of Temperate and Sub-Tropical Estuarine Phytoplankton in a Scenario of Nutrient Enrichment under Solar Ultraviolet Radiation Exposure vol.40, pp.3, 2017, https://doi.org/10.1007/s12237-016-0176-z
  27. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals : Ultraviolet radiation, temperature, and corals vol.62, pp.3, 2009, https://doi.org/10.1002/lno.10481
  28. Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses vol.19, pp.10, 2009, https://doi.org/10.1111/1462-2920.13782
  29. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells vol.7, pp.None, 2009, https://doi.org/10.1038/srep45713
  30. UV-Protective Compounds in Marine Organisms from the Southern Ocean vol.16, pp.9, 2009, https://doi.org/10.3390/md16090336
  31. Species traits dictate seasonal-dependent responses of octocoral-algal symbioses to elevated temperature and ultraviolet radiation vol.37, pp.3, 2009, https://doi.org/10.1007/s00338-018-1716-8
  32. The Large Jellyfish Rhizostoma luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications vol.16, pp.10, 2009, https://doi.org/10.3390/md16100396
  33. Water Column Optical Properties of Pacific Coral Reefs Across Geomorphic Zones and in Comparison to Offshore Waters vol.11, pp.15, 2019, https://doi.org/10.3390/rs11151757
  34. Phylogenetic signature of light and thermal stress for the endosymbiotic dinoflagellates of corals (Family Symbiodiniaceae) vol.64, pp.5, 2009, https://doi.org/10.1002/lno.11155
  35. Mycosporine-Like Amino Acids: Making the Foundation for Organic Personalised Sunscreens vol.17, pp.11, 2009, https://doi.org/10.3390/md17110638
  36. Unraveling the Seasonality of UV Exposure in Reef Waters of a Rapidly Warming (Sub-)tropical Sea vol.7, pp.None, 2009, https://doi.org/10.3389/fmars.2020.00111
  37. A New “Business as Usual” Climate Scenario and the Stress Response of the Caribbean Coral Montastraea cavernosa vol.7, pp.None, 2009, https://doi.org/10.3389/fmars.2020.00728
  38. Current status of Acropora palmata and Acropora cervicornis in the Colombian Caribbean: demography, coral cover and condition assessment vol.847, pp.9, 2009, https://doi.org/10.1007/s10750-020-04238-6
  39. The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms – A review vol.720, pp.None, 2009, https://doi.org/10.1016/j.scitotenv.2020.137486
  40. Giant clams in shallow reefs: UV-resistance mechanisms of Tridacninae in the Red Sea vol.39, pp.5, 2009, https://doi.org/10.1007/s00338-020-01968-w
  41. Trends and variability in spectral diffuse attenuation of coral reef waters vol.39, pp.5, 2009, https://doi.org/10.1007/s00338-020-01971-1
  42. Cloudiness reduces the bleaching response of coral reefs exposed to heat stress vol.27, pp.15, 2009, https://doi.org/10.1111/gcb.15676
  43. Comparative sensitivity of the early life stages of a coral to heavy fuel oil and UV radiation vol.781, pp.None, 2009, https://doi.org/10.1016/j.scitotenv.2021.146676
  44. Dissolved organic matter from tropical peatlands reduces shelf sea light availability in the Singapore Strait, Southeast Asia vol.672, pp.None, 2021, https://doi.org/10.3354/meps13776
  45. Finding Nemo’s clock reveals switch from nocturnal to diurnal activity vol.11, pp.1, 2009, https://doi.org/10.1038/s41598-021-86244-9