DOI QR코드

DOI QR Code

Triple proton transfer of excited 7-hydroxyquinoline along a hydrogen-bonded water chain in ethers: secondary solvent effect on the reaction rate

  • Received : 2009.06.15
  • Accepted : 2009.09.02
  • Published : 2009.11.01

Abstract

A large secondary solvent effect on the reaction rate has been experimentally observed in the excited-state tautomerization of a 7-hydroxyquinoline (7HQ) molecule complexed cyclically with two water molecules in ethers. The proton acceptance of a water molecule from the enolic group of 7HQ is the rate-determining step while the proton donation of a water molecule to the imino group of 7HQ is followed rapidly to complete the triple proton transfer of the $7HQ{\cdot}(H_2O)_2$ complex in both diethyl ether and di-n-propyl ether. The rate constant of the tautomerization is larger in diethyl ether than in di-n-propyl ether due to the more polar environment around the complex in diethyl ether. Although the activation energies of the proton transfer are similar in both ethers, the kinetic isotope effect of the rate constant is larger in di-n-propyl ether than in diethyl ether. We attribute these kinetic differences to dissimilarity in the polarities of the two secondary solvents.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. L. Sun, R. I. Cukier and Y. Bu, Factors determining the deriving force of DNA formation: Geometrical differences of base pairs, dehydration of bases, and the arginine assisting, J. Phys. Chem. B, 2007, 111, 1802-1808. https://doi.org/10.1021/jp063645f
  2. S. Yan, L. Zhang, R. I. Cukier and Y. Bu, Exploration on regulating factors for proton transfer along hydrogen-bonded water chains, ChemPhysChem, 2007, 8, 944-954. https://doi.org/10.1002/cphc.200600674
  3. D. Marx, M. E. Tuckerman, J. Hutter and M. Parrinello, The nature of the hydrated excess proton in water, Nature, 1999, 397, 601-604. https://doi.org/10.1038/17579
  4. P. L. Geissler, C. Dellago, D. Chandler, J. Hutter and M. Parrinello, Autoionization in liquid water, Science, 2001, 291, 2121-2124. https://doi.org/10.1126/science.1056991
  5. M. E. Tuckerman, D. Marx and M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature, 2002, 417, 925-929. https://doi.org/10.1038/nature00797
  6. O. F. Mohammed, D. Pines, J. Dreyer, E. Pines and E. T. J. Nibbering, Sequential proton transfer throughwater bridges in acid-base reactions, Science, 2005, 310, 83-86. https://doi.org/10.1126/science.1117756
  7. O.-H. Kwon, Y.-S. Lee, B. K. Yoo and D.-J. Jang, Excited-state triple proton transfer of 7-hydroxyquinoline along a hydrogen-bonded alcohol chain: Vibrationally assisted proton tunnelling, Angew. Chem., Int. Ed., 2006, 45, 415-419. https://doi.org/10.1002/anie.200503209
  8. S.-Y. Park, Y.-S. Lee and D.-J. Jang, Excited-state proton-transfer dynamics of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate), Phys. Chem. Chem. Phys., 2008, 10, 6703-6707. https://doi.org/10.1039/b811180d
  9. O.-H. Kwon, T. G. Kim, Y.-S. Lee and D.-J. Jang, Biphasic tautomerization dynamics of excited 7-hydroxyquinoline in reverse micelles, J. Phys. Chem. B, 2006, 110, 11997-12004. https://doi.org/10.1021/jp0573184
  10. Y.-S. Lee, H. Yu, O.-H. Kwon and D.-J. Jang, Photo-induced protontransfer cycle of 2-naphthol in faujasite zeolitic nanocavities, Phys. Chem. Chem. Phys., 2008, 10, 153-158. https://doi.org/10.1039/B712928A
  11. C. Tanner, C. Manca and S. Leutwyler, Probing the threshold to H atom transfer along a hydrogen-bonded ammonia wire, Science, 2003, 302, 1736-1739. https://doi.org/10.1126/science.1091708
  12. N. Agmon, The Grotthuss mechanism, Chem. Phys. Lett., 1995, 244, 456-462. https://doi.org/10.1016/0009-2614(95)00905-J
  13. G. A. Voth, Computer simulation of proton solvation and transport in aqueous and biomolecular systems, Acc. Chem.Res., 2006, 39, 143-150. https://doi.org/10.1021/ar0402098
  14. H. Lapid, N. Agmon, M. K. Petersen and G. A. Voth, A bond-order analysis of the mechanism for hydrated protonmobility in liquid water, J. Chem. Phys., 2005, 122, 014506. https://doi.org/10.1063/1.1814973
  15. C. J. T. de Grotthuss, Sur la decomposition de l'eau et des corps quelletient en dissolution al'aide de l'electricite galvanique, Ann. Chim., 1806, 58, 54-74
  16. D. Marx, Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations, ChemPhysChem, 2006, 7, 1848-1870. https://doi.org/10.1002/cphc.200600128
  17. O. F. Mohammed, D. Pines, E. T. J. Nibbering and E. Pines, Baseinduced solvent switches in acid-base reactions, Angew. Chem., Int. Ed., 2007, 46, 1458-1461 https://doi.org/10.1002/anie.200603383
  18. O. F. Mohammed, D. Pines, E. Pines and E. T. G. Nibbering, Aqueous bimolecular proton transfer in acid-base neutralization, Chem. Phys., 2007, 341, 240-257. https://doi.org/10.1016/j.chemphys.2007.06.040
  19. E. Huckel, Theorie der beweglichkeiten des wasserstoff- und hydroxylions in wassriger losung, Z. Elektrochem. Angew. Phys. Chem., 1928, 34, 546-562.
  20. A. E. Stearn and J. Eyring, The deduction of reaction mechanisms from the theory of absolute rates, J. Chem. Phys., 1937, 5, 113-124. https://doi.org/10.1063/1.1749988
  21. J. D. Bernal and R. H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys., 1933, 1, 515-548. https://doi.org/10.1063/1.1749327
  22. M. L. Huggins, Hydrogen bridges in ice and liquid water, J. Phys. Chem., 1936, 40, 723-731.
  23. M. Eigen, Proton transfer, acid-base catalysis and enzymatic hydrolysis, Angew. Chem., Int. Ed. Engl., 1964, 3, 1-19. https://doi.org/10.1002/anie.196400011
  24. G. Zundel and H.Metzger, Energiebander der tunnelnden uberschuB-protenon in flussigen sauren. Eine IR-spektroskopische untersuchung der natur der gruppierungen $H_5O_2^+$, Z. Phys. Chem., Neue Folge, 1968, 58, 225-245. https://doi.org/10.1524/zpch.1968.58.5_6.225
  25. S.-Y. Park, Y.-S. Lee, O.-H. Kwon and D.-J. Jang, Proton transport of water in acid-base reactions of 7-hydroxyquinoline, Chem. Commun., 2009, 926-928.
  26. A.Kohen, R. Cannio, S. Bartolucci and J. P.Klinman, Enzyme dynamics and hydrogen tunneling in a thermophilic alcohol dehydrogenase, Nature, 1999, 399, 496-499. https://doi.org/10.1038/20981
  27. E. Hatcher, A. V. Soudackov and S. Hammes-Schiffer, Proton-coupled electron transfer in soybean lipoxygenase, J. Am.Chem. Soc., 2004, 126, 5763-5775. https://doi.org/10.1021/ja039606o
  28. H. Luecke, H.-T. Richter and J. K. Lanyi, Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution, Science, 1998, 280, 1934-1937. https://doi.org/10.1126/science.280.5371.1934
  29. R. B. Gennis, Cytochrome c oxidase: One enzyme, two mechanisms?, Science, 1998, 280, 1712-1713. https://doi.org/10.1126/science.280.5370.1712
  30. U. Liebl, G. Lipowski, M. Ngererie, J.-C. Lambry, J.-L. Martin and M. H. Vos, Coherent reaction dynamics in a bacterial cytochrome c oxidase, Nature, 1999, 401, 181-184. https://doi.org/10.1038/43699
  31. J. Tantori, P. Sebban, H. Michel and L. Baciou, In Rhodobacter sphaeroides reaction centers, mutation of proline L209 to aromatic residues in the vicinity of a water channel alters the dynamic coupling between electron and proton transfer processes, Biochemistry, 1999, 38, 13179-13187. https://doi.org/10.1021/bi990192e
  32. D. Lu and G. A. Voth, Proton transfer in the enzyme carbonic anhydrase: An ab initio study, J. Am. Chem. Soc., 1998, 120, 4006-4014. https://doi.org/10.1021/ja973397o
  33. S. Toba, G. Colombo and K. M. Merz, Jr., Solvent dynamics and mechanism of proton transfer in human carbonic anhydrase II, J. Am. Chem. Soc., 1999, 121, 2290-2302. https://doi.org/10.1021/ja983579y
  34. J. Konijnenberg, G. B. Ekelmans, A. H. Huizer and C. A. G. O. Varma, Mechanism and solvent dependence of the solvent-catalysed pseudo-intramolecular proton transfer of 7-hydroxyquinoline in the first electronically excited singlet state and in the ground state of its tautomer, J. Chem. Soc., Faraday Trans. 2, 1989, 85, 39-51. https://doi.org/10.1039/f29898500039
  35. S.-I. Lee and D.-J. Jang, Proton transfers of aqueous 7-hydroxyquinoline in the first excited singlet, lowest triplet, and ground states, J. Phys. Chem., 1995, 99, 7537-7541. https://doi.org/10.1021/j100019a040
  36. S. Kohtani, A. Tagami and R. Nakagaki, Excited-state proton transfer of 7-hydroxyquinoline in a non-polar medium: Mechanism of triple proton transfer in the hydrogen-bonded system, Chem. Phys. Lett., 2000, 316, 88-93. https://doi.org/10.1016/S0009-2614(99)01247-6
  37. P.-T. Chou, C.-Y. Wei, C.-R. C. Wang, F.-T. Hung and C.-P. Chang, Proton-transfer tautomerism of 7-hydroxyquinolines mediated by hydrogen-bonded complexes, J. Phys. Chem. A, 1999, 103, 1939-1949. https://doi.org/10.1021/jp983201m
  38. W.-H. Fang, Theoretical characterization of the structures and reactivity of $7-hydroxyquinoline-(H_2O)_n$ (n=1-3) complexes, J. Phys. Chem. A, 1999, 103, 5567-5573. https://doi.org/10.1021/jp990524p
  39. Y Tanimoto and M. Itoh, Excited-state interation of maminoacetophenone with t-amyl alcohol, Chem. Phys. Lett., 1978, 57, 179-182. https://doi.org/10.1016/0009-2614(78)80428-X
  40. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1st edn., 1997, pp. 11-32.
  41. Y. Matsumoto, T. Ebata and N. Mikami, OH stretching vibrations and hydrogen-bonded structures of $7-hydroxyquinoline-(H_2O)_{1-3}$ investigated by IR-UV double-resonance spectroscopy, Chem. Phys. Lett., 2001, 338, 52-60. https://doi.org/10.1016/S0009-2614(01)00226-3
  42. O.-H. Kwon, Y.-S. Lee, H. J. Park, Y. Kim and D.-J. Jang, Asymmetric double proton transfer of excited 1 : 1 7-azaindole/alcohol complexes with anomalously large and temperature-independent kinetic isotope effects, Angew. Chem., Int. Ed., 2004, 43, 5792-5796. https://doi.org/10.1002/anie.200461102
  43. O. Klein, F. Aguilar-Parrilla, J. M. Lopez, N. Jagerovic, J. Elguero and H.-H. Limbach, Dynamic NMR study of the mechanisms of double, triple, and quadruple proton and deuteron transfer in cyclic hydrogen bonded solids of pyrazole derivatives, J. Am. Chem. Soc., 2004, 126, 11718-11732. https://doi.org/10.1021/ja0493650
  44. R. L. Schowen, Harmony and dissonance in the concert of proton motions, Angew. Chem., Int. Ed. Engl., 1997, 36, 1434-1438. https://doi.org/10.1002/anie.199714341
  45. D. Gerritzen and H.-H. Limbach, Kinetic isotope effects and tunneling in cyclic double and triple proton transfer between acetic acid and methanol in tetrahydrofuran studied by dynamic $^1H$ and $^2H$ NMR spectroscopy, J. Am. Chem. Soc., 1984, 106, 869-879. https://doi.org/10.1021/ja00316a007
  46. P. M. Tolstoy, P. Schah-Mohammedi, S. N. Smirnov, N. S. Golubev, G. S. Denisov and H.-H. Limbach, Characterization of fluxional hydrogen-bonded complexes of acetic acid and acetate by NMR: Geometries and isotope and solvent effects, J. Am. Chem. Soc., 2004, 126, 5621-5634. https://doi.org/10.1021/ja039280j
  47. J. M. Lopez, F.Mannle, I. Wawer, G. Buntkowsky and H.-H. Limbach, NMR studies of double proton transfer in hydrogen bonded cyclic N,N'-diarylformamidine dimmers: Conformational control, kinetic HH/HD/DD isotope effects and tunneling, Phys. Chem. Chem. Phys., 2007, 9, 4498-4513. https://doi.org/10.1039/b704384h
  48. O.-H. Kwon and A. H. Zewail, Double proton transfer dynamics of model DNA base pairs in the condensed phase, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 8703-8708. https://doi.org/10.1073/pnas.0702944104
  49. R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochim. Biophys. Acta, Rev. Bioenerg., 1985, 811, 265-322. https://doi.org/10.1016/0304-4173(85)90014-X
  50. H. J. Park, O.-H. Kwon, C. S. Ah and D.-J. Jang, Excited-state tautomerization dynamics of 7-hydroxyquinoline in b-cyclodextrin, J. Phys. Chem. B, 2005, 109, 3938-3943. https://doi.org/10.1021/jp046817m
  51. M. Born, Volumen und hydratationswarme der ionen, Z. Phys., 1920, 1, 45-48. https://doi.org/10.1007/BF01881023
  52. P. M. Kiefer and J. T. Hynes, Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. 1. Interpretation of tunneling kinetic isotopic effect, J. Phys. Chem. A, 2004, 108, 11793-11808. https://doi.org/10.1021/jp040497p
  53. M. Gil and J. Waluk, Vibrational gating of double hydrogen tunneling in porphycene, J. Am. Chem. Soc., 2007, 129, 1335-1341. https://doi.org/10.1021/ja066976e
  54. A. Bach, S. Coussan, A. Muller and S. Leutwyler, Water-chain clusters: Vibronic spectra of $7-hydroxyquinoline{\cdot}(H_2O)_2$, J. Chem. Phys., 2000, 112, 1192-1203. https://doi.org/10.1063/1.480672
  55. J. Barsan, M. J. Sutcliffe and N. S. Scrutton, Enzymatic H-transfer requires vibration-driven extreme tunneling, Biochemistry, 1999, 38, 3218-3222. https://doi.org/10.1021/bi982719d
  56. O. F. Mohammed,O.-H.Kwon, C. M. Othon andA.H. Zewail, Charge transfer assisted by collective hydrogen-bonding dynamics, Angew. Chem., Int. Ed., 2009, 48, 6251-6256. https://doi.org/10.1002/anie.200902340
  57. M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham and R. W. Taft, Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, J. Org. Chem., 1983, 48, 2877-2887. https://doi.org/10.1021/jo00165a018

Cited by

  1. Excited‐State Prototropic Equilibrium Dynamics of 6‐Hydroxyquinoline Encapsulated in Microporous Catalytic Faujasite Zeolites vol.16, pp.42, 2010, https://doi.org/10.1002/chem.201000734
  2. Reaction mechanisms : Part (iii) Polar reactions vol.106, pp.None, 2010, https://doi.org/10.1039/b927077a
  3. Solvent effect on the excited-state proton transfer of 7-hydroxyquinoline along a hydrogen-bonded ethanol dimer vol.13, pp.13, 2011, https://doi.org/10.1039/c0cp02347g
  4. Excited-State Proton Transfer and Geminate Recombination in Hydrogels Based on Self-Assembled Peptide Nanotubes vol.115, pp.50, 2009, https://doi.org/10.1021/jp207245q
  5. Excited-state hydrogen relay along a blended-alcohol chain as a model system of a proton wire: deuterium effect on the reaction dynamics vol.14, pp.25, 2009, https://doi.org/10.1039/c2cp23615j
  6. Water-wire catalysis in photoinduced acid–base reactions vol.14, pp.25, 2009, https://doi.org/10.1039/c2cp23796b
  7. Anomalous Acid-Base Equilibria in Biologically Relevant Water Nanopools vol.33, pp.10, 2009, https://doi.org/10.5012/bkcs.2012.33.10.3493
  8. The excited-state multiple proton transfer mechanism of the 7-hydroxyquinoline–(CH3OH)3 cluster vol.39, pp.12, 2009, https://doi.org/10.1039/c5nj01869b
  9. Theoretical insights into photoinduced proton transfer of 7-hydroxyquinoline via intermolecular hydrogen-bonded wire of mixed methanol and water vol.135, pp.8, 2009, https://doi.org/10.1007/s00214-016-1963-0
  10. Photoinduced strong acid-weak base reactions in a polar aprotic solvent vol.4, pp.2, 2016, https://doi.org/10.1088/2050-6120/4/2/024004
  11. Controlling reactivity by remote protonation of a basic side group in a bifunctional photoacid vol.18, pp.24, 2009, https://doi.org/10.1039/c5cp07672b
  12. The critical size of hydrogen-bonded alcohol clusters as effective Brønsted bases in solutions vol.18, pp.36, 2016, https://doi.org/10.1039/c6cp01650b
  13. Combined Experimental and Theoretical Study of the Transient IR Spectroscopy of 7-Hydroxyquinoline in the First Electronically Excited Singlet State vol.120, pp.47, 2016, https://doi.org/10.1021/acs.jpca.6b07843
  14. Hydrogen-bonded channel-dependent mechanism of long-range proton transfer in the excited-state tautomerization of 7-hydroxyquinoline: a theoretical study vol.136, pp.2, 2017, https://doi.org/10.1007/s00214-017-2055-5
  15. The Excited-State Triple Proton Transfer Reaction of 2,6-Diazaindoles and 2,6-Diazatryptophan in Aqueous Solution vol.139, pp.18, 2009, https://doi.org/10.1021/jacs.7b01672
  16. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution vol.117, pp.16, 2017, https://doi.org/10.1021/acs.chemrev.6b00491
  17. Proton Capture Dynamics in Quinoline Photobases: Substituent Effect and Involvement of Triplet States vol.121, pp.38, 2017, https://doi.org/10.1021/acs.jpca.7b04512
  18. The Cyclic Hydrogen‐Bonded 6‐Azaindole Trimer and its Prominent Excited‐State Triple‐Proton‐Transfer Reaction vol.130, pp.18, 2018, https://doi.org/10.1002/ange.201800944
  19. The Cyclic Hydrogen‐Bonded 6‐Azaindole Trimer and its Prominent Excited‐State Triple‐Proton‐Transfer Reaction vol.57, pp.18, 2009, https://doi.org/10.1002/anie.201800944
  20. Photodriven Deprotonation of Alcohols by a Quinoline Photobase vol.122, pp.40, 2009, https://doi.org/10.1021/acs.jpca.8b06152
  21. C-H···O Hydrogen Bond Anchored Water Bridge in 1,2,4,5-Tetracyanobenzene-Water Clusters vol.123, pp.17, 2009, https://doi.org/10.1021/acs.jpca.9b02238
  22. C-H···Y (Y=N, O, π) Hydrogen Bond: A Unique Unconventional Hydrogen Bond vol.100, pp.1, 2009, https://doi.org/10.1007/s41745-019-00145-5
  23. 8-(Pyridin-2-yl)quinolin-7-ol as a Platform for Conjugated Proton Cranes: A DFT Structural Design vol.11, pp.10, 2009, https://doi.org/10.3390/mi11100901
  24. Excited-State Intramolecular Proton Transfer: A Short Introductory Review vol.26, pp.5, 2009, https://doi.org/10.3390/molecules26051475