A kernel machine for estimation of mean and volatility functions

  • Shim, Joo-Yong (Department of Applied Statistics, Catholic University of Daegu) ;
  • Park, Hye-Jung (Computer Course Division of General Education and Teacher's Certification, Daegu University) ;
  • Hwang, Chang-Ha (Department of Statistics, Dankook University)
  • Published : 2009.09.30

Abstract

We propose a doubly penalized kernel machine (DPKM) which uses heteroscedastic location-scale model as basic model and estimates both mean and volatility functions simultaneously by kernel machines. We also present the model selection method which employs the generalized approximate cross validation techniques for choosing the hyperparameters which affect the performance of DPKM. Artificial examples are provided to indicate the usefulness of DPKM for the mean and volatility functions estimation.

Keywords

References

  1. Fan, J. Q. and Yao, Q. W. (1998). Efficient estimation of conditional variance functions in stochastic regression. Biometrika, 85, 645-660. https://doi.org/10.1093/biomet/85.3.645
  2. Gallant, A. R. and Tauchen, G. (1997). Estimation of continuous time models for stock returns and interest rates. Macroeconomic Dynamics, 1, 135-68.
  3. Kimeldorf, G. S. and Wahba, G. (1971). Some results on tchebycheffian spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
  4. Mercer, J. (1909). Functions of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society, A, 415-446.
  5. Ruppert, D., Wand, M. P., Holst, U. and Hossjer, O. (1997). Local polynomial variance-function estimation. Technometrics, 39, 262-73. https://doi.org/10.2307/1271131
  6. Shim, J. and Seok, K. H. (2008). Kernel poisson regression for longitudinal data. Journal of the Korean Data & Information Science Society, 19, 1353-1360.
  7. Shim, J., Kim, T. Y., Lee, S. Y. and Hwang, C. (2009). Credibility estimation via Kernel mixed effects model. Journal of Korean Data & Information Science Society, 20, 445-452.
  8. Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.
  9. Vapnik, V. N. (1998). Statistical learning theory, John Wiley, New York.
  10. Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistica Sinica, 6, 675-692.
  11. Yau, P. and Kohn, R. (2003). Estimation and variable selection in nonparametric heteroscedastic regression. Statistics and Computing, 13, 191-208. https://doi.org/10.1023/A:1024293931757
  12. Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics and Data Analysis, 50, 813-829. https://doi.org/10.1016/j.csda.2004.10.008
  13. Yuan, M. and Wahba, G. (2004). Doubly penalized likelihood estimator in heteroscedastic regression. Statistics & Probability Letters, 69, 11-20. https://doi.org/10.1016/j.spl.2004.03.009