DOI QR코드

DOI QR Code

A Study on the Estimation Accuracy of Energy Expenditure by Different Attaching Position of Accelerometer

가속도계의 부착위치에 따른 에너지 소비량의 예측 정확도에 관한 연구

  • Kang, Dong-Won (Konkuk University, Research Institute of Biomedical Engineering) ;
  • Choi, Jin-Seung (Konkuk University, Research Institute of Biomedical Engineering) ;
  • Mun, Kyung-Ryoul (Konkuk University, Research Institute of Biomedical Engineering) ;
  • Bang, Yun-Hwa (Konkuk University, Research Institute of Biomedical Engineering) ;
  • Tack, Gye-Rae (Konkuk University, Research Institute of Biomedical Engineering)
  • 강동원 (건국대학교, 의공학실용기술연구소) ;
  • 최진승 (건국대학교, 의공학실용기술연구소) ;
  • 문경률 (건국대학교, 의공학실용기술연구소) ;
  • 방윤환 (건국대학교, 의공학실용기술연구소) ;
  • 탁계래 (건국대학교, 의공학실용기술연구소)
  • Published : 2009.03.30

Abstract

This works studied to compare gas analyzer with accelerometer and the estimation of energy expenditure based on different attaching position of tri-axial accelerometer such as waist and top of the foot Based on the fact that oxygen intake increases more radically linearly during walking more than 8.0km/hr. 9 male subjects performed walking and running on the treadmill with speed of $1.5{\sim}8.5km$/hr and $4.5{\sim}13.0km$/hr, respectively. Commercially available Nike + iPod Sports kit was used to compare energy expenditure with sensor module attached to their foot. Actual energy expenditure was determined by a continuous direct gas analyzer and two multiple regression equations of walking and running mode for different attaching position were developed. Results showed that estimation accuracy of energy expenditure using waist mounted accelerometer was higher than that of the top of the foot and Nike + iPod Sports kit. Results of energy expenditure based on waist and top of the foot showed that the crossover state of energy expenditure occurred at 7.5km/hr. But Nike + iPod Sports kit could not find intersection of energy expenditure in all nine subjects. Therefore the sensor module attached to the waist and separate multi regression equation by walking and running mode was the best to estimate more accurate prediction.

본 연구는 3축 가속도 센서를 허리와 발등에 부착하여 호흡가스분석기와 에너지 소비량을 비교하고, 가속도 센서를 이용한 에너지 소비량 예측과 센서 부착위치에 따른 에너지 소비량에 관한 정확도를 살펴보는 연구를 실시하였다. 8km/hr 이상의 보행속도에서 산소소비량은 속도의 증가에 따라 보다 급격한 직선적 증가를 보인다는 것을 토대로 성인남성 9명을 대상으로 트레드밀위에서 $1.5{\sim}8.5km$/hr의 속도로 걷는 동작을, $4.5{\sim}13.0km$/hr로 뛰는 동작을 수행하였다. 또한 발등에 부착된 센서모듈과 비교를 위해 현재 시판중인 Nike+iPod Sports kit에서 측정된 에너지 소비량과의 비교도 수행하였다. 실제 에너지 소비량은 가스분석 기를 통하여 측정되었으며 각 부착위치마다 보행과 주행을 구분하여 다중회귀식을 구현하였다. 실험결과 허리에 부착된 센서모듈의 에너지 소비량의 예측이 발등과 Nike+iPod Sports kit 보다 상관관계가 높음을 알 수 있었다. 또한 보행과 주행으로 구분된 에너지 소비량을 예측한 결과가 허리와 발등에서 모두 평균 7.5km/hr이상에서 에너지 소비량이 교차함을 알 수 있었다. 하지만 Nike+iPod Sports kit의 경우, 9명 모두에서 에너지 소비량의 교차점을 찾을 수 없었다. 따라서 허리에 센서모듈을 부착하고 보행과 주행에 대한 다중회귀식을 구분함으로써 더욱 정확한 예측을 수행할 수 있었다.

Keywords

References

  1. 강동원, 최전승, 탁계래(2008a). 3축 가속도계와 신체정보를 이용한 보행 및 주행 시 에너지 소비량의 예측. 한국운동역학회지, 18(4), 109-114.
  2. 강동원, 최진승, 탁계래(2008b). 가속도 센서를 이용한 실시간 스포츠 동작 분류.모니터링에 관한 연구. 한국운동역학회지, 18(2), 59-64.
  3. 양윤준(2004). 신체활동 측정법에는 어떤 방법이 있는가? 가정의학회지, 25(11), 5380-5382.
  4. 손현식(2005). 운동생리학과 당뇨병 : 득과 실, 대한내과학회지, 68(6), 603-610.
  5. Ainsworth, B. E., Haskell, W. L., Whitt, M. C., Irwin, A. M., Swartz, A. M., Strath, S. J., O'brien, W. L., Bassett, D. R., Schmitz, K. H., Emplaincourt, P. O., Jacobs, D. R. & Leon, A. S.(2000). Compendium of physical activities: An update of activity codes and MET intensities. Medicine and Science in Sports and Exercise, 32, 498-516. https://doi.org/10.1097/00005768-200009001-00009
  6. Bouchard, C.(2001). Physical activity and health: introduction to the dose-response symposium. Medicine and Science in Sports and Exercise, 33(6), 5347-5350.
  7. Chen, K. Y. & Sun, M.(1997). Improving energy expenditure estimation by using a triaxial accelerometer. Journal of Applied Physiology, 83(6), 2112-2122.
  8. Choi, J. H., Lee, J. Hwang, H. T., Kim, J. P., Park, J. C. & Shin, K.(2005). Estimation of activity energy expenditure: accelerometer approach. Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China, September 1-4.
  9. Berlin, J. E., Storti, K. L. & Brach, J. S.(2006). Using activity monitors to measure physical activity in free-living conditions. Physical Theraphy, 86(8), 1137-1145.
  10. Liao, L. T., Shiang, T. Y. & Chang, J. H.(2008). Acceleration on different body positions during running on a treadmill. ISBS Conference 2008, 94-97.
  11. Meijer, G. A. L., Westerterp, K .R., Verhoeven, F. M. H. Koper, H. B. M. & Hoor, F. T.(1991). Methods to assess physical activity with special reference to motion sensors and accelerometers. Biomedical Engineering, IEEE Transactions on, 38(3), 221-229. https://doi.org/10.1109/10.133202
  12. Meijer, E. P., Westerterp, K. R. & Verstappen, F. T. J.(1999). Effect of exercise training on total daily physical activity in elderly humans. European Journal of Applied Physiology and Occupational Physiology, 80(11), 16-21. https://doi.org/10.1007/s004210050552
  13. Menier, D. R., Pugh, L. G. C. E.(1968). The relation of oxygen intake and velocity of walking and running, in competition walkers. Journal of Physiology, 197, 7117-721.
  14. Jacques Mercier, Daniel Le Gallais, Marc Durand, Cluistine Caudal, Jean Paul Micallef & Cluistian Prefautl.(1994). Energy expenditure and cardiorespiratory responses at the transition between walking and running. European Journal of Applied Physiology, 69, 525-529. https://doi.org/10.1007/BF00239870
  15. Pate R. R., Pratt M., Blair S. N., Haskell W. L., Macera C. A., Bouchard C., Buchner, D., Ettinger, W., Heath, G. W. & King, A. C.(1995). Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA, 273, 402-407. https://doi.org/10.1001/jama.273.5.402
  16. Sallis, J. F., Buono, M. J., Roby, J. J., Carlson, D. & Nelson, J. A. (1990). The Caltrac accelerometer as a physical activity monitor for school-aged children. Medicine and Science in Sports and Excercise, 22(5), 698-703. https://doi.org/10.1249/00005768-199010000-00023
  17. Su, S. W., Wang, L., Celler, B. G., Ambikairajah, E. & Savkin, A. V.(2005). Estimation of walking Energy expenditure by using support vector regression. Engineering in Medicine and Biology Society, 2005. IEEE-EMBS, 3526-3529.
  18. Welk, G. J., McOain, J. J., Eisenmann, J. C. & Wickel, E. E.(2007). Field validation of the MTI Actigraph and Body-Media armband monitor using the IDEEA monitor. Obesity, ㄹ15(4), 918-928. https://doi.org/10.1038/oby.2007.624

Cited by

  1. Effects of walking exercise for wellness convergence in the digital age - Based on physical activity - vol.13, pp.5, 2015, https://doi.org/10.14400/JDC.2015.13.5.365
  2. Prediction of energy expenditure from a tri-axial accelerometer during treadmill walking vol.32, pp.2, 2011, https://doi.org/10.9718/JBER.2011.32.2.079
  3. Prediction of Energy Expenditure by Using a Tri-axial Accelerometer vol.21, pp.2, 2011, https://doi.org/10.5103/KJSB.2011.21.2.253