Development of Design Technology of Korean Style Air-Inflated Double-Layer Plastic Greenhouse

한국형 공기주입 이중피복 플라스틱온실의 설계기술 개발

  • Published : 2009.09.30

Abstract

The construction of experimental greenhouses, operating test, and analysis on variation of different environment factors were conducted to provide fundamental data for design of Korean style air-inflated double-layer plastic greenhouse. The development of technology of attaching plastic to the structure and fasteners to be able to keep airtight was required in order to maintain proper static pressure in air space of double layer coverings. The insulation effect of air inflated greenhouse was better than conventional type. The temperature of arch type roof was greater about $2^{\circ}C$ than peach type roof in air inflated greenhouse. It was recommended that the plastic should be attached at the edges without clearance length in order to ease installation and raise airtightness of double layer coverings. The transmittance of arch type roof was greater than peach type in air inflated one span greenhouse. The transmittance of air inflated greenhouse was greater than conventional type due to frame ratio and distance between double layers in three span greenhouse. The condensation occurred on conventional type greenhouse was more than air inflated type. It was required to examine for a long time in order to analyze it quantitatively.

본 연구는 우리나라의 기상환경에 적합한 한국형 공기주입 이중피복 플라스틱 온실을 설계하는데 필요한 기초자료를 제공하기 위하여 실험용 공기주입 이중피복 플라스틱 온실을 제작하여 작동실험을 실시하고 온실내부의 환경변화를 분석하였다. 온실의 피복재를 설치할 때 시공기술이 부족하여 밀폐도가 많이 떨어지는 것으로 나타났기 때문에 이중피복 공기충의 정압을 적절하게 유지하기 위해서는 높은 밀폐도를 유지할 수 있는 피복재 설치기술과 관련 자재의 개발이 요구되었다. 관행의 이중피복온실보다 공기주입 이중피복온실이 단열효과가 더 우수하였으며, 특히 아치형 지붕형태의 공기주입 이중피복온실이 복숭아 형태의 관행온실에 비해 $2^{\circ}C$ 정도 높아 보온효과가 상당히 우수한 것으로 나타났다. 시공성이 우수하고 밀폐도를 높일 수 있는 피복방식은 온실위에 피복재를 덮은 상태에서 여유길이를 두지 않고 자연스럽게 고정시키는 것이 가장 바람직하였다. 다른 조건들이 동일한 공기주입 이중피복 단동온실의 경우 복숭아형 지붕온실에 비해 아치형 지붕온실에서 광투과율이 더 높은 것으로 나타났다. 3연 동 온실의 경우에는 관행 이중피복온실에 비해 공기주입 이중피복온실이 광투과율이 더 높은 것으로 나타났으며, 이는 주로 골조율과 이중피복재간의 간격 때문인 것으로 판단되었고, 이에 대한 자세한 원인은 앞으로 추가적인 실험을 통해 검증할 예정이다. 결로의 발생현상을 가시적으로 비교한 결과 관행온실에서 더 많은 결로가 발생함을 확인할 수 있었다 그러나 정량적인 비교를 위해서는 장기간의 관측과 이론적인 분석이 필요할 것으로 판단되며, 향후 더 자세한 실험을 통해 규명할 예정이다.

Keywords

References

  1. Aldrich, R.A. and J.w. Bartok. 1989. Greenhouse engineering. 2nd ed. Northeast regional agricultural engineering service. p. 35-36
  2. Boodley, J.W. 1996. The commercial greenhouse. 2nd ed. Delmar Publishers. p. 83-84
  3. Both, AJ. 2004. First air-inflated double-layer polyethylene greenhouse becomes ASAE historic landmark. ASAE Historical Landmark Dedication. Rutgers University, New Brunswick, NJ, USA
  4. Fang, W. 2004. Double layer poly in Taiwan and its potential applications. ASAE Historical Landmark Dedication. Rutgers University, New Brunswick, NJ, USA
  5. Fang, W., D. Mears, and AJ. Both. 2007. Story of airinflated double-layer polyethylene greenhouse and its recent applications in Taiwan. ASAE International Seminar on Agricultural Structures and Agricultural Engineering
  6. Giacomelli, G.A., K.C. Ting, and S. Panigrahi. 1988. Solar PAR vs. solar total radiation transmission in greenhouse. Transaction of the ASAE 31(5):1540-1543
  7. Giacomelli, G.A., K.C. Ting, and W. Fang. 1991. Wavelength specific transmission of polyethylene film greenhouse grazing. Plasticulture 199113:17-22
  8. Jensen, M. 2004. The world-wide impact of doublepoly greenhouses. ASAE Historical Landmark Dedication. Rutgers University, New Brunswick, NJ, USA
  9. Kao, T.C. and C.H.W. 2002. Vegetable growth performance in semitropical air inflated greenhouse. Acta Hort 578. 239:245
  10. Lee, H.W., H.S. Nam, S.Y. Sim, S.w. Nam, and Y.S . Kim. 2009. Fundamental experiments for design of air inflating apparatus of air-inflated double-layer plastic greenhouse. Proceedings of the Korean Society for Bio-Environment Control Conference 18(1):208-212 (in Korean)
  11. Nelson, p.y. 1991. Greenhouse operation and management. 4th ed. Prentice Hall. p. 52-56
  12. Okada, M. and I. Hayashi. 1983: Trial construction of an air-inflated greenhouse and its features, Agric. and Hortic. 58(1):57-60 (in Japanese)
  13. Roberts, W.J. and D.R. Mears. 1969. Double covering a film greenhouse using air to separate film layers. Transactions of the ASAE 12(1):32-38
  14. Roberts, W.J., M.K. Kim, and D.R. Mears. 1972. Air inflated and air supported greenhouses. ASAE Paper No. 72-404
  15. Sase, S. 2004. Double-poly and natural ventilation. ASAE Historical Landmark Dedication. Rutgers University, New Brunswick, NJ, USA
  16. Simpkins, J.C., D.R. Mears, and W.J. Roberts. 1976. Reducing heat losses in polyethylene covered greenhouses. Transactions of the ASAE 19(4):714-719
  17. Simpkins, J.C., D.R. Mears, and w.J. Roberts. 1984. Evaluation of an experimental greenhouse film with improved energy performance. ASAE Paper No. 84-4033
  18. Wu, C.H., H.S. Chang, and J.T. Shaw. 2002. Environmental control of double-layer greenhouse in Taiwan. Acta Hort 578:71-78