Fabrication and Fracture Properties of Alumina Matrix Composites Reinforced with Carbon Nanotubes

Carbon Nanotube로 강화된 알루미나 기지 복합재료의 제조 및 파괴특성

  • Kim, Sung Wan (School of Materials Science and Engineering Pusan National University) ;
  • Chung, Won Sub (School of Materials Science and Engineering Pusan National University) ;
  • Sohn, Kee-Sun (Department of Materials Science and Metallurgical Engineering Sunchon National University) ;
  • Son, Chang-Young (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials Pohang University of Science and Technology)
  • 김성완 (부산대학교 재료공학부) ;
  • 정원섭 (부산대학교 재료공학부) ;
  • 손기선 (순천대학교 재료공학부) ;
  • 손창영 (포항공과대학 항공재료연구센터) ;
  • 이성학 (포항공과대학 항공재료연구센터)
  • Received : 2008.09.10
  • Published : 2009.01.28

Abstract

In this study, alumina matrix composites reinforced with carbon nanotubes (CNTs) were fabricated by ultrasonic dispersion, ball milling, mixing, compaction, and sintering processes, and their relative density, electrical resistance, hardness, flexure strength, and fracture toughness were evaluated. 0~3 vol.% of CNTs were relatively homogeneously dispersed in the composites in spite of the existence of some pores. The three-point bending test results indicated that the flexure strength increased with increasing volume fraction of CNTs, and reached the maximum when the CNT fraction was 1.5 vol.%. The fracture toughness increased as the CNT fraction increased, and the fracture toughness of the composite containing 3 vol.% of CNTs was higher by 40% than that of the monolithic alumina. According to observation of the crack propagation path after the indentation fracture test, a new toughening mechanism of grain interface bridging-induced CNT bridging was suggested to explain the improvement of fracture toughness in the alumina matrix composites reinforced with CNTs.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 279, 787 (2002) https://doi.org/10.1126/science.1060928
  2. M. R. Falvo, G. J. Clary, Nature 389, 582 (1997) https://doi.org/10.1038/39282
  3. P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio, Adv. Mater. 12, 750 (2000) https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  4. S.-H. Kwon, D. -Y. Park, D. -Y. Lee, K. -J. Euh, K. -A. Lee, J. Kor. Inst. Met. & Mater. 46, 182 (2008)
  5. C. Xu, B. Wei, J. Liang, D. Wu, Met. Mater. Int. 5, 55 (1999) https://doi.org/10.1007/BF03026005
  6. A. Peigney, Ch. Laurent, E.Flahaut, A. Rousset, Ceram. Inter. 26, 677 (2000) https://doi.org/10.1016/S0272-8842(00)00004-3
  7. J. W. An, D. H. You, D. S. Lim, Wear 255, 677 (2003) https://doi.org/10.1016/S0043-1648(03)00216-3
  8. D. S. Lim, D. H You, H. J. Choi, S. H. Lim, H. Jang, Wear 259, 539 (2005) https://doi.org/10.1016/j.wear.2005.02.031
  9. A. Peigney, Ch. Laurent, O. Dumortier, A. Rousset, J. Eur. Ceram. Soc. 18, 1995 (1998) https://doi.org/10.1016/S0955-2219(98)00141-1
  10. W. A. Curtin, B. W. Sheldon, Materialstoday 7, 44 (2004) https://doi.org/10.1016/S1369-7021(04)00508-5
  11. G. D. Zahn, J. D. Kuntz, J. Wan, A. K. Mukherjee, Nat. Mater. 2, 38 (2003) https://doi.org/10.1038/nmat793
  12. R. W. Siegel, S. K. Chang, B. J. Ash, J. Stone, P. M. Ajayan, R. W. Doremus, L. S. Schadler, Scripta Mater. 44, 2061 (2001) https://doi.org/10.1016/S1359-6462(01)00892-2
  13. C. B. Mo, S. I. Cha, K. T. Kim, K. H. Lee, S. H. Hong, Mater. Sci. Eng. A395, 124 (2004) https://doi.org/10.1016/j.msea.2004.12.031
  14. N. Zhao, C. He, J. Li, Z. Jiang, Y. Li, Materials Research Bulletin 41, 2204 (2006) https://doi.org/10.1016/j.materresbull.2006.04.029
  15. N. Nagaraju, A. Fonseca, Z. Konyac, J. Nagy, J. of Molecular Catalysis A: Chemical 181, 57 (2002) https://doi.org/10.1016/S1381-1169(01)00375-2
  16. W. Qian, T. Liu, F. Wei, Z. Wang, G. Luo, H. Yu, Z. Li, Carbon 41, 2613 (2003) https://doi.org/10.1016/S0008-6223(03)00341-5
  17. E. Farkas, M. E. Anderson, Z. H. Chen, and A. G. Rinzler, Chemical Physics Letters 363, 111 (2002) https://doi.org/10.1016/S0009-2614(02)01203-4
  18. H. Kajiura, S. Tsutsui, H. J. Huang, Y. Murakami, Chemical Physics Letters 364, 586 (2002) https://doi.org/10.1016/S0009-2614(02)01407-0
  19. G. R. Antis, P.Chntikul, B. R.Lawn, D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  20. S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, A. Tagliaferro, Physica E: Low-dimensional Systems and Nanostructures 37, 58 (2007) https://doi.org/10.1016/j.physe.2006.07.014
  21. C. M. Chen, Y. M. Dai, J. G. Huang, J. M. Jehng, Carbon 44, 1808 (2006) https://doi.org/10.1016/j.carbon.2005.12.043
  22. N. P. Padture, W. A. Curtin, Scripta Materialia 58, 989 (2008) https://doi.org/10.1016/j.scriptamat.2008.01.038
  23. D. Jiang, A. K. Mukherjee, Scripta Materialia 58, 991 (2008) https://doi.org/10.1016/j.scriptamat.2008.01.037