Cyclic Deformation Behaviors under Isothermal and Thermomechanical Fatigue Conditions in Nb and Mo Added 15Cr Ferritic Stainless Steel

Nb 및 Mo 첨가 페라이트계 스테인리스강의 등온 저주기 및 열기계적 피로에 따른 변형거동

  • Jung, Jae Gyu (Materials Research Team, R&D Division, Hyundai-Kia Motors) ;
  • Oh, Seung Taik (Materials Research Team, R&D Division, Hyundai-Kia Motors) ;
  • Choi, Won Doo (Div. of Adv. Mater. Eng., Hanbat National University) ;
  • Lee, Doo Hwan (Materials Research Team, R&D Division, Hyundai-Kia Motors) ;
  • Lim, Jong Dae (Materials Research Team, R&D Division, Hyundai-Kia Motors) ;
  • Oh, Yong Jun (Div. of Adv. Mater. Eng., Hanbat National University)
  • 정재규 (현대기아자동차연구소 금속재료연구팀) ;
  • 오승택 (현대기아자동차연구소 금속재료연구팀) ;
  • 최원두 (한밭대학교 신소재공학부) ;
  • 이두환 (현대기아자동차연구소 금속재료연구팀) ;
  • 임종대 (현대기아자동차연구소 금속재료연구팀) ;
  • 오용준 (한밭대학교 신소재공학부)
  • Received : 2009.05.18
  • Published : 2009.11.25

Abstract

This paper deals with cyclic stress and strain responses during isothermal low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) loadings on Nb and Mo containing 15Cr stainless steel, which is used for exhaust manifolds in automobiles. The test temperatures ($T_{i}$) of the isothermal LCF were 600 and $800^{\circ}C$. The minimum temperature of the TMF test was $100^{\circ}C$ and the maximum temperaures ($T_{p}$) were varied between 500 and $800^{\circ}C$. In both loading conditions, weak cyclic softening is observed at $T_{i}=T_{p}=800^{\circ}C$, but the transition to strong cyclic hardening is completed with the temperature decrease below $T_i=600{\sim}700^{\circ}C$ for LCF and $T_{p}=500{\sim}600^{\circ}C$ for TMF. The stress-strain hysteresis loops in the TMF loading show a significant stress relaxation during compressive (heating) half cycle at $T_{p}>500^{\circ}C$, which develops tensile mean stress during cycling. Due to the stress relaxation, the TMF test sample reveals much lower dislocation density than the isothermally fatigued sample at the same temperature with $T_{p}$. A detailed correlation between fatigue microstructure and cycling deformation behavior is discussed.

Keywords

Acknowledgement

Supported by : 현대자동차(주)

References

  1. G.-Y. Lu, M. B. Behling, and G. R. Halford, Fatigue. Fract. Engng. Mater. Struct. 23, 787 (2000) https://doi.org/10.1046/j.1460-2695.2000.00310.x
  2. J. J. Thomas, L. Verger, A. Bifnonnet, and E. Charkaluk, Fatigue. Fract. Engng. Mater. Struct. 27, 887 (2004) https://doi.org/10.1111/j.1460-2695.2004.00746.x
  3. E. Charkaluk, A. Bifnonnet, A. Consrantinescu, and K. Dang Van Fatigue. Fract. Engng. Mater. Struct. 25, 1199 (2002) https://doi.org/10.1046/j.1460-2695.2002.00612.x
  4. H. T. Kang, Y.-L. Lee, J. Chen, and D. Fan, Int. J. Fatigue. 29, 1797 (2007) https://doi.org/10.1016/j.ijfatigue.2007.03.008
  5. A. Consrantinescu, E. Charkaluk, G. Lederer, and L. Verger, Int. J. Fatigue. 26, 805 (2004) https://doi.org/10.1016/j.ijfatigue.2004.01.006
  6. N. Fujita, K. Ohmura, and A. Yamamoto, Mater. Sci. Eng., A. 351, 272 (2003) https://doi.org/10.1016/S0921-5093(02)00831-6
  7. G. Chinouilh, P. O. Santacreu, and J. M. Herbelin, SAE Tech. Paper Series 01-0564 (2007)
  8. S. Amiable, S. Chapuliot, A. Constantinescu, and A. Fissolo, Fatigue. Fract. Engng. Mater. Struct. 29, 209 (2006) https://doi.org/10.1111/j.1460-2695.2006.00982.x
  9. V. Velay, G. Bernhart, D. Delagnes, and L. Penazzi, Fatigue. Fract. Engng. Mater. Struct. 28, 1009 (2005) https://doi.org/10.1111/j.1460-2695.2005.00939.x
  10. R. P. Skelton, T. Vilhemsen, and G. A. Webster, Int. J. Fatigue. 20, 641 (1998) https://doi.org/10.1016/S0142-1123(98)00027-9
  11. R. P. Skelton, Mat. Sci. Technol. 7, 427 (1991) https://doi.org/10.1179/026708391790183853
  12. R. P. Skelton, Int. J. Fatigue. 26, 253 (2004) https://doi.org/10.1016/S0142-1123(03)00144-0
  13. A. Fissolo, S. Amiable, O. Ancelet, F. Mermaz, J. M. Stelmaszyk, A. Constantinescu, C. Robertson, L. Vincent, V. Maillot, and F. Bouchet, Int. J. Fatigue. 31, 587 (2009) https://doi.org/10.1016/j.ijfatigue.2008.03.038
  14. P. Hahner, C. Rinaldi, V. Bicego, E. Affeldt, T. B. H. Andersson, T. Beck, H. Klingelhoffer, H.-J. Kühn, A. Koster, M. Loveday, M. Marchionni, and C. Rae, Int. J. Fatigue. 30, 372 (2008) https://doi.org/10.1016/j.ijfatigue.2007.01.052
  15. M. S. Loveday, V. Bicego, P. Hahner, H. Klingelhoffer, H.-J. Kuhn, and B. Roebuck, Int. J. Fatigue. 30, 382 (2008) https://doi.org/10.1016/j.ijfatigue.2007.01.059
  16. M. Moalla, K.-H. Lang, and D. Lohe, Mater. Sci. Eng. A. 319-321, 647 (2001) https://doi.org/10.1016/S0921-5093(01)00985-6
  17. T.-B. Hwang and Y.-J. Oh, J. Kor. Inst. Met. & Mater. 42, 409 (2004)
  18. Y.-J. Oh, T.-B. H, B. M. Shin, Mater. Trans. 46, 317 (2005) https://doi.org/10.2320/matertrans.46.317