Genetic Analysis of Seed Size in Watermelon

수박 종자크기에 대한 유전분석

  • Kim, Yong-Jae (NH Seed Research & Development Center) ;
  • Yang, Tae-Jin (Dept. of Plant Sciences, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Young-Hoon (Dept. of Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Yong-Jik (Hana Seed co.) ;
  • Kang, Sun-Cheol (NH Seed Research & Development Center) ;
  • Kim, Yong-Kwon (NH Seed Research & Development Center) ;
  • Cho, Jeoung-Lai (Dept. of Horticulture, Division of Applied Life Science, Gyeongsang National University)
  • Received : 2009.09.02
  • Published : 20091200

Abstract

In order to study the inheritance of watermelon seed size, we used six watermelon lines of different seed sizes as parental lines. Six lines include three accessions, 'PI525088' with giant seed (GS), 'Charleston Gray' with big seed (BS), and 'NT' with normal medium size seed (NS), and three near isogenic lines, 'NTss' with small seed (SS), 'NTms' with micro seed (MS) and 'NTts' with tomato seed size (TS) bred by crosses between accession 'NT' of normal seed size and accession 'TDR' of the smallest seed size,. We inspected $F_1$, $F_2$, $BC_1F_1$ (P1), $BC_1F_1$ (P2) populations from the crosses between the adjacent seed size materials like $GS{\times}BS$, $BS{\times}NS$, $NS{\times}SS$, and $MS{\times}TS$, and two crosses between parental lines showing relatively big difference in seed size such as $GS{\times}TS$ and $NS{\times}TS$. Partial single dominant inheritance patterns were observed between $GS{\times}BS$, $NS{\times}SS$, and $MS{\times}TS$ and inheritance patterns based on two genes or more than two genes were speculated between $BS{\times}NS$. A very wide segregation range was observed from the population of $GS{\times}TS$ indicating many quantitative genes involved in the seed sizes. Overall, we speculated that more than six genes are involved in between the biggest and smallest seed size watermelon and three major genes between the normal seed size and the smallest seed size watermelon.

수박에서 종자크기의 유전분석을 위해 종자크기가 다른 6계통을 양친으로 한 교배집단을 조사하였다. 전체 6계통 중 3계통은 수집 계통으로 giant seed(GS)인 'PI525088' big size(BS)인 'Charleston Gray' 그리고 medium seed(NS)인 'NT'를 사용하였으며, 다른 3계통은 보통 크기와 가장 작은 크기 계통간($^{\prime}NT^{\prime}{\times}^{\prime}TDR^{\prime}$) 교잡 및 여교잡으로부터 육성되어 종자크기만 상이한 near isogenic line으로서 small seed(SS)인 'NTss' micro seed(MS)인 'NTms' tomato seed size(TS)인 'NTts'가 이용되었다. 각각의 종자크기에 관련한 유전양상을 파악하기 위해 인접한 종자크기를 가진 계통들간의 조합인 $GS{\times}BS$, $BS{\times}NS$, $NS{\times}SS$, $MS{\times}TS$, 그리고 종자크기가 비교적 차이가 계통들간 큰 두 조합인 $NS{\times}TS$, $GS{\times}NS$에 대하여 P1, P2, $F_1$, $F_2$, $BC_1F_1(P1)$, $BC_1F_1(P2)$를 작성, 전개하여 종자크기의 분리를 관찰하여 유전양식을 판단하였다. $GS{\times}BS$, $NS{\times}SS$, $MS{\times}TS$ 의 경우 1개의 유전자 차이가 발견되었고, 유전양식은 부분우성이었고, $BS{\times}NS$의 경우 2개 이상의 유전자가 관여하는 것으로 판단되며, $GS{\times}TS$에서는 분리후대에서 매우 넓은 범위의 종자크기를 가진 개체들이 관찰되어 이들 두 계통들간에는 6개 이상의 유전자, $NS{\times}TS$의 경우에는 3개의 유전자가 종자크기의 차이를 만드는 것으로 판단되었다.

Keywords

References

  1. 동부한농. 2004. 2005년 수박 품종안내 상보
  2. 함안군농업기술센타. 2005. 수박 신품종 도입 현장 평가회자료
  3. Hartley T. 1992. Researcher is serious about seedless watermelons. Florida agriculture. August:14
  4. Hayata Y, Yoshiyuki N, Naoto I. 1995. Synthetic Cytokinin- 1-(2-chloro-4-pyridyl)-3-phenylurea(CPPU)- promotes fruit set and induces parthenocarpy in watermelon. J. Amer. Soc. Hort. Sci. 120(6):997-1000
  5. 허윤찬. 2008. 씨 적은 고품질 수박 품종 육성. 디지털 농업. August:74-75
  6. 강순철, 조장환, 김용권. 2000. 수박의 종자 및 종피 형질에 관한 유전. 한국원예학회지. 41(5):471-474
  7. 김용재, 양태진, 박영훈, 이용직, 강순철, 김용권, 조정래. 2009. 다양한 종자크기를 가진 Near Isogenic 수박 계통 육성 및 종자관련 특성 분석. 한국육종학회지. 41(4):403-411
  8. Nerson H, Paris HS, Karch Z, Sachs M. 1985. Seed treatments for improved germination of tetraploid watermelon. HortScience. 20(5):897-899
  9. 농림수산식품부. 2008. 2007 채소류 생산실적. 3-4
  10. Sugiyama K, Morishita M. 1998. New technique for production of seedless watermelon. Suppl. J. Japan. Soc. Hort. Sci. 67(1)98
  11. Sugiyama K, Morishita M. 2002. A new method for producing dipolid seedless watermelon. Acta Horticullturae. 588:223-226
  12. 신젠타. 2004. 씨제로 수박 핵심재배기술기술서
  13. Tanaka T, Wimol S, Mizutani T. 1995. Inheritance of fruit shape and seed size of watermelon. J. Japan. Soc. Hort. Sci. 64(3):543-548 https://doi.org/10.2503/jjshs.64.543
  14. Vashistha B, Sharma B, Seshadri JC, 1975. A note on the variability in seed characters in watermelon (Citrullus lanatus Thunb (Mansf) syn.). South Indian Horticulture. 23:130-134
  15. Wang M, Zhang X. 1988. Breeding few-seed watermelon via chromosome reciprocal translocation induces by gamma-ray. Acta Horticulturae Sinica. 15(2):125-130
  16. Wimol S, Tanaka T, Mizutani T. 1994. Studies on the breeding of small-seed watermelon. Proc. Sch. Agric. Kyushu Tokai Univ. 13:1-8
  17. Zhang J. 1996. Breeding and production of watermelon for edible seed in China.Cucurbit Genetics Cooperative Report.19:66-67
  18. Zhang J. 1996. Inheritance of seed size from diverse crosses in watermelon. Cucurbit Genetics Cooperative Report. 19:67-69
  19. Zhang X. 1988. Breeding few-seed/seedless watermelon via chromosome reciprocal translocation induces by gamma-ray. Cucurbit Genetics Cooperative Report. 11:60-63
  20. Zheng XY, Li XQ and Xu Y. 2007. The effect of hydropriming on germination barriers in triploid watermelon seeds. Seeds; Biology, development and ecology. Chpt.28:269-278