Genetic Variation of Parental Inbred Lines for Korean Waxy Corn Hybrid Varieties revealed by SSR markers

우리나라 찰옥수수 품종들의 교배친 자식계통들에 대한 유전적 변이성

  • Park, Jun-Sung (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Sa, Kyu-Jin (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Park, Ki Jin (Maize Experiment Station, Kangwon Agricultural Research and Extension Services) ;
  • Jang, Jin-Sun (Maize Experiment Station, Kangwon Agricultural Research and Extension Services) ;
  • Lee, Ju Kyong (Division of Bio-resources Technology, College of Agriculture and Life Sciences, Kangwon National University)
  • 박준성 (강원대학교 농업생명과학대학 생물자원공학부) ;
  • 사규진 (강원대학교 농업생명과학대학 생물자원공학부) ;
  • 박기진 (강원도 농업기술원 옥수수시험장) ;
  • 장진선 (강원도 농업기술원 옥수수시험장) ;
  • 이주경 (강원대학교 농업생명과학대학 생물자원공학부)
  • Received : 2009.06.04
  • Published : 20090600

Abstract

In maize, knowledge of genetic diversity and genetic relationships among elite inbred lines is an significant impact on the selection of parental lines for hybrid varieties. Genetic diversity and genetic relationships among 11 parental inbred lines of Korean waxy and normal corn varieties were analyzed using 50 SSR markers distributed over the whole genome. A total of 171 allele bands were detected with an average of 3.4 alleles per locus. Number of allele bands per locus ranged from two to six and gene diversity varied from 0.165 to 0.900 with an average of 0.596 depending on the SSR loci. The cluster tree recognized three major groups with 61.6% genetic similarity. Group I includes 7 inbred lines (KL103, HW1, HW4, HW6, HW7, HW8, HW9), with similarity coefficients of between 0.616 and 0.730. Group II includes 2 inbred lines (HF1, HF2), with similarity coefficients of 0.959. Group III includes 2 inbred lines (HW3, HW5), with similarity coefficients of 0.713. The present study indicates that the SSR markers chosen for this analysis are effective for the assessment of genetic diversity and genetic relationships among 11 parental inbred lines.

우리나라 찰옥수수 및 종실용 옥수수 품종들의 교배친인 11개의 자식계통의 유전적 다양성 및 계통간 유연관계를 50개의 SSR 마커를 사용하여 분석한 결과는 다음과 같다. 1. 50개의 SSR primer들은 찰옥수수 및 종실용 옥수수 품종들의 교배친인 11개 자식계통들에서 총 171개의 대립단편을 증폭시켰고, 각 SSR primer들에서 증폭된 대립단편의 수는 최소 2개에서 최대 6개의 범위로 나타나 SSR loci당 평균 3.4개가 증폭되었으며, 유전적 다양성 값은 0.165에서 0.900 수준의 값을 보여 평균 0.596 값을 나타내었다. 2. 찰옥수수 품종들의 경우 미백찰의 교배친인 HW3과 HW4 자식계통은 34개의 SSR 마커, 미백2호의 교배친인 HW3과 HW9 자식계통은 29개의 SSR 마커, 조미찰의 교배친인 HW5와 HW6 자식계통은 33개의 SSR 마커, 그리고 미흑찰의 교배친인 HW7과 HW8 자식계통은 26개의 SSR 마커들에서 각각 공우성을 나타내었다. 그러나 종실용 옥수수 품종인 강일옥의 교배친인 HF1과 HF2는 단 1개의 마커(umc1588)만 공우성이었다. 3. 11개의 자식계통들은 유전적 유사성 0.616 수준에서 크게 3개의 Group으로 구분되었다. Group I은 유전적 유사성 0.616에서 0.730 수준의 범위에서 7계통(KL103, HW1, HW4, HW6, HW7, HW8, HW9)을 포함하고 있었고, Group II는 유전적 유사성 0.959 수준에서 2계통(HF1, HF2)을 포함하고 있었으며, 그리고 Group III은 유전적 유사성 0.713 수준에서 2계통(HW3, HW5)을 포함하고 있었다. 4. 찰옥수수 품종들의 교배친 자식계통들에서의 유전적 유사성은 미백찰의 교배친인 HW3과 HW4 자식계통들 사이에서는 0.584, 미백2호의 교배친인 HW3과 HW9 자식계통들 사이에서는 0.631, 조미찰의 교배친인 HW5과 HW6 자식계통들 사이에서는 0.590, 그리고 미흑찰의 교배친인 HW7과 HW8자식계통들 사이에서는 0.631 이었다. 그리고 종실용 옥수수인 강일옥의 교배친 HF1과 HF2 자식계통은 유전적 유사성이 0.959로 매우 가까운 유연관계를 나타내었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단, 농촌진흥청

References

  1. Ajmone-Marsan P., Castiglioni P., Fusari F., Kuiper M., Motto M. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96:219-227 https://doi.org/10.1007/s001220050730
  2. Akagi H., Yokozaki Y., Inagaki A., Fujimura T. 1997. Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor. Appl. Genet. 94:61-67 https://doi.org/10.1007/s001220050382
  3. Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridg KM, Dweikat I. 2008. Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol. Breeding 21:497-509 https://doi.org/10.1007/s11032-007-9149-z
  4. Bernado R. 1996. Testcross selection prior to inbreeding in maize : Mean performance and realized genetic variance. Crop Sci. 36:867-871 https://doi.org/10.2135/cropsci1996.0011183X003600040008x
  5. Dellaporta S.L., Wood J., Hicks J.B. 1983. A simple and rapid method for plant DNA preparation. Version II. Plant Mol. Biol. Rep. 1:19-21 https://doi.org/10.1007/BF02712670
  6. Dice L.R. 1945. Measures of the amount of ecologic association between species. Ecology 26:297-302 https://doi.org/10.2307/1932409
  7. Enoki H, Sato H, Koinuma K. 2002. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor. Appl. Genet. 104:1270-1277 https://doi.org/10.1007/s00122-001-0857-1
  8. Hallauer AR, Russell WA, Lamkey KR. 1988. Corn breeding. pp 463-564. In G.F. Sprague and JW Dudley (ed). Corn and Corn Improvement. 3rd ed. Agron., Monogr. 18. Madison, WI, USA
  9. Hamza S., Hamida W.B., Rebat A., Harrabi M. 2004. SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits. Euphytica 135:107-118 https://doi.org/10.1023/B:EUPH.0000009547.65808.bf
  10. Hwang X.Q., Börner A., Röder M.S., Ganal M.W. 2002. Assessing genetic diversity of wheat (Triticum asetivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105:699-707 https://doi.org/10.1007/s00122-002-0959-4
  11. Lanza LLB, de Souza Jr CL, Ottoboni LMM, Vieira MLC, de Souza AP. 1997. Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor. Appl. Genet. 94:1023-1030 https://doi.org/10.1007/s001220050510
  12. Lee JK, Kim N-H, Min H-W, Kim N-S. 2002. Genetic diversity and inter-relationships among maize inbred lines using MITE-AFLP. Korean J. Breed. 34(4):356-362
  13. Lu H, Bernardo R. 2001. Molecular marker diversity among current and historical maize inbreds. Theor. Appl. Genet. 103:613-617 https://doi.org/10.1007/PL00002917
  14. Melchinger A.E, Lee M., Lamkey K.R., Hallauer A.R., Woodman W.L. 1990. Genetic diversity for restriction fragment length polymorphism and heterosis for two diallel sets of maize inbreds. Theor. Appl. Genet. 80:488-496 https://doi.org/10.1007/BF00226750
  15. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70:3321-3323 https://doi.org/10.1073/pnas.70.12.3321
  16. Ni J., Colowit P.M., Mackill D.J. 2002. Evaluation of Genetic Diversity in Rice Subspecies Using Microsatellite Markers. Crop Sci. 42:601-607 https://doi.org/10.2135/cropsci2002.0601
  17. Park J-S, Park JY, Park KJ, Lee JK. 2008. Genetic diversity among waxy corn accessions in Korea revealed by microsatellite markers. Korean J. Breed. 40(3):250-257
  18. Prasad M., Varshney R.K., Roy J.K., Balyan H.S., Gupta P.K. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor. Appl. Genet. 100:584-592 https://doi.org/10.1007/s001220050077
  19. Rohlf F.J. 1998. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version: 2.02. Exeter Software, Setauket, New York
  20. Senior M.L., Heun M. 1993. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884-889 https://doi.org/10.1139/g93-116
  21. Senior M.L., Murphy J.P., Goodman M.M., Stuber C. 1998. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci. 38:1088-1098 https://doi.org/10.2135/cropsci1998.0011183X003800040034x
  22. Smith J.S.C., Smith O.S. 1992. Fingerprinting crop varieties. Adv. Agron. 47:85-129 https://doi.org/10.1016/S0065-2113(08)60489-7
  23. Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.J,. Senior M.L., Mitchell S.E., Kresovich S., Ziegler J. 1997. An evaluation of the utility of SSR loci as molecular marker in maize (Zea maysL.): comparison with RFLPs and pedigree. Theor. Appl. Genet. 95:163-173 https://doi.org/10.1007/s001220050544
  24. Xie C, Warburton M, Li M, Li X, Xiao M, Hao Z, Zhang S. 2008. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol. Breeding 21:407-418 https://doi.org/10.1007/s11032-007-9140-8