DOI QR코드

DOI QR Code

Optical and Dielectric Properties of Chalcogenide Glasses at Terahertz Frequencies

  • Kang, Seung-Beom (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kwak, Min-Hwan (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Park, Bong-Je (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kim, Sung-Il (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Ryu, Han-Cheol (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Chung, Dong-Chul (School of Information & Computer, Woosuck University) ;
  • Jeong, Se-Young (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kang, Dae-Won (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Choi, Sang-Kuk (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Paek, Mun-Cheol (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Cha, Eun-Jong (Department of Biomedical Engineering, School of Medicine, Chungbuk National University) ;
  • Kang, Kwang-Yong (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2009.05.13
  • Accepted : 2009.10.23
  • Published : 2009.12.31

Abstract

Terahertz time-domain spectroscopy has been used to study the optical and dielectric properties of three chalcogenide glasses: $Ge_{30}As_8Ga_2Se_{60}$, $Ge_{35}Ga_5Se_{60}$, and $Ge_{10}As_{20}S_{70}$. The absorption coefficients ${\alpha}({\nu})$, complex refractive index n(${\nu}$), and complex dielectric constants ${\varepsilon}({\nu})$ were measured in a frequency range from 0.3 THz to 1.5 THz. The measured real refractive indices were fitted using a Sellmeier equation. The results show that the Sellmeier equation fits well with the data throughout the frequency range and imply that the phonon modes of glasses vary with the glass compositions. The theory of far-infrared absorption in amorphous materials is used to analyze the results and to understand the differences in THz absorption among the sample glasses.

Keywords

References

  1. M. Exter and D. Grischkowsky, "Characterization of an Optoelectronic Terahertz Beam System," IEEE Trans. Micowave Theory and Techniques, vol. 38, no. 11, 1990, pp. 1684-1691. https://doi.org/10.1109/22.60016
  2. T.I. Jeon et al., "Electrical Characterization of Conducting Polypyrrole by THz Time-Domain Spectroscopy," Appl. Phys. Lett., vol. 77, no. 16, 2000, pp. 2452-2454. https://doi.org/10.1063/1.1319188
  3. T.I. Jeon and D. Grischkowsky, "Nature of Conduction in Doped Silicon," Phys. Reiview Lett., vol. 78, no. 16, 1997, pp. 1106-1109. https://doi.org/10.1103/PhysRevLett.78.1106
  4. G. Gallot et al., "Measurements of the THz Absorption and Dispersion of ZnTe and Their Relevance to the Electro-optic Detection of THz Radiation," Appl. Phys. Lett., vol. 74, no. 23, 1999, pp. 3450-3452. https://doi.org/10.1063/1.124124
  5. C. Kang et al., "Terahertz Optical and Electrical Properties of Hydrogen-Functionalized Carbon Nanotubes," Physical Review B, vol. 75, 2007, pp. 085410. https://doi.org/10.1103/PhysRevB.75.085410
  6. Y. Ueno et al., "Quantitative Measurements of Amino Acids by Terahertz Time-Domain Transmission Spectroscopy," Analytical Chemistry, vol. 78, no. 15, 2006, pp. 5424-5428. https://doi.org/10.1021/ac060520y
  7. H.C. Ryu et al., "A Dielectric Property Analysis of Ferroelectric Thin Film Using Terahertz Time-Domain Spectroscopy" Integrated Ferroelectrics, vol. 95, 2007, pp. 83-91. https://doi.org/10.1080/10584580701756573
  8. M. Naftaly and R.E. Miles, "Terahertz Time-Domain Spectroscopy: A New Tool for Study of Glasses in the Far Infrared," Journal of Non-Crystalline Solids, vol. 351, 2005, pp. 3341-3346. https://doi.org/10.1016/j.jnoncrysol.2005.08.003
  9. M. Naftaly and R.E. Miles, "Terahertz Beam Interactions with Amorphous Materials," R.E Naftaly et al. (eds), Terahertz Frequency Detection and Identification of Materials and Objects, Springer, 2007, pp. 107-122.
  10. S. Kojima et al., "Terahertz Time-Domain Spectroscopy of Low-Energy Excitations in Glasses," Journal of Molecular Structure, vol. 744-747, 2005, pp. 243-246. https://doi.org/10.1016/j.molstruc.2004.10.045
  11. J. Nishii et al., "Recent Advances and Trends in Chalcogenide Glass Fiber Technology: A Review," J. Non-Cryst. Solids, vol. 140, 1992, pp. 199-208. https://doi.org/10.1016/S0022-3093(05)80767-7
  12. Y.B. Shin et al., "Modification of the Local Phonon Modes and Electron-Phonon Coupling Strengths in $Dy^{3+}$-Doped Sulfide Glasses for Efficient 1.3 $\mu$m Amplification," Chemical Physics Letters, vol. 317, 2000, pp. 637-641. https://doi.org/10.1016/S0009-2614(99)01400-1
  13. J.S. Sanghera and I.D. Aggarwal, "Active and Passive Chalcogenide Glass Optical Fibers for IR Applications: A Review," J. Non-Cryst. Solids, vol. 256 & 257, 1999, pp. 6-16.
  14. A.Zakery and S.R. Elliott, "Optical Properties and Applications of Chacogenide Glasses: A Review," J. Non-Cryst. Solids, vol. 330, 2003, pp. 1-12. https://doi.org/10.1016/j.jnoncrysol.2003.08.064
  15. T.D. Dorney, R.G. Baraniuk, and D.M. Mittleman, "Material Parameter Estimation with Terahertz Time-Domain Spectroscopy," J. Opt. Soc. Am. A, vol. 18, no. 7, 2001, pp. 1562-1571. https://doi.org/10.1364/JOSAA.18.001562
  16. Y.G. Choi et al., "$Pr^{3+}$- and $Pr^{3+}$/$Er^{3+}$-Doped Selenide Glasses for Potential $1.6\mu{m}$ Optical Amplifier Materials," ETRI J.,vol. 23, no. 3, 2001, pp. 97-105. https://doi.org/10.4218/etrij.01.0101.0301
  17. W.J. Chung et al., "Selenide Glass Optical Fiber Doped with Pr 3+ for U-Band Optical Amplifier," ETRI J., vol. 27, no. 4, 2005, pp. 411-417. https://doi.org/10.4218/etrij.05.0105.0005
  18. P.U. Jepsen and B.M. Fischer, "Dynamic Range in Terahertz Time-Domain Transmission and Reflection Spectroscopy," Opt. Lett., vol. 30, 2005, pp. 29-31. https://doi.org/10.1364/OL.30.000029
  19. S. Onari, K. Matsuishi, and T. Arai, "Far-Infrared Absorption Spectra and the Spatial Fluctuation of Charges on Amorphous As-S and As-Se Systems," J. Non-Crystal. Solids, vol. 86, 1986, pp. 22-32. https://doi.org/10.1016/0022-3093(86)90471-0
  20. E. Schlomann, "Dielectric Losses in Ionic Crystals with Disordered Charge Distributions," Phys. Rev., vol. 135, 1964, pp. A413-A419. https://doi.org/10.1103/PhysRev.135.A413
  21. U. Strom et al., "Disorder-Induced Far Infrared Absorption in Amorphous Materials," Solid State Commun., vol. 15, 1974, pp. 1871-1875. https://doi.org/10.1016/0038-1098(74)90106-9

Cited by

  1. Terahertz Time Domain Spectroscopy, T-Ray Imaging and Wireless Data Transfer Technologies vol.10, pp.3, 2009, https://doi.org/10.5515/jkiees.2010.10.3.158
  2. Terahertz dielectric response of ferroelectric baxsr1-xtio3 thin films vol.58, pp.11, 2009, https://doi.org/10.1109/tuffc.2011.2084
  3. Terahertz Dielectric Response of Ferroelectric BaxSr1-xTiO3Thin Films vol.422, pp.1, 2009, https://doi.org/10.1080/00150193.2011.594748
  4. Dielectric Characteristics of Co Doped ZnO Thin Films at Terahertz Frequencies vol.422, pp.1, 2009, https://doi.org/10.1080/00150193.2011.594767
  5. Dielectric Characteristics of Pb(Zr, Ti)O3Films on MgO Single Crystal Substrate by Terahertz Time Domain Spectroscopy vol.422, pp.1, 2009, https://doi.org/10.1080/00150193.2011.594769
  6. Guided Wave THz Spectroscopy of Explosive Materials vol.11, pp.1, 2011, https://doi.org/10.5515/jkiees.2011.11.1.042
  7. 평행판 도파관 THz 분광을 이용한 폭발물 RDX 검출 vol.61, pp.12, 2012, https://doi.org/10.5370/kiee.2012.61.12.1939
  8. A Cost-effective Sub-terahertz Continuous Wave Generation Scheme Using a Broadband Optical Source and An Optical Feedback Loop vol.34, pp.2, 2009, https://doi.org/10.1007/s10762-013-9959-5
  9. A possible approach on optical analogues of gravitational attractors. vol.21, pp.7, 2009, https://doi.org/10.1364/oe.21.008298
  10. High-refractive index, low-loss oxyfluorosilicate glasses for sub-THz and millimeter wave applications vol.125, pp.15, 2019, https://doi.org/10.1063/1.5083091
  11. High refractive index properties of oxyfluorosilicate glasses and a unified dielectric model of silicate oxide glasses in the sub-terahertz frequency region vol.10, pp.2, 2009, https://doi.org/10.1364/ome.382686
  12. Optical characteristics of the undamaged and laser damaged K9 glass in terahertz band vol.7, pp.4, 2009, https://doi.org/10.1088/2053-1591/ab8746
  13. Systematic characterization of THz dielectric properties of multi-component glasses using the unified oscillator model vol.11, pp.3, 2009, https://doi.org/10.1364/ome.417771