DOI QR코드

DOI QR Code

Analysis of a.c. Characteristics in ZnO-Bi2O3-Mn3O4 Varistor Using Dielectric Functions

유전함수를 이용한 ZnO-Bi2O3-Mn3O4 바리스터의 a.c. 특성 분석

  • Hong, Youn-Woo (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo-Soon (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong-Hun (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 바이오IT융합센터) ;
  • 신효순 (한국세라믹기술원 바이오IT융합센터) ;
  • 여동훈 (한국세라믹기술원 바이오IT융합센터) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2010.09.08
  • Accepted : 2010.11.01
  • Published : 2010.12.01

Abstract

In this study, we have investigated the effects of Mn dopant on the bulk trap levels and grain boundary characteristics of $Bi_2O_3$-based ZnO (ZB) varistor using admittance spectroscopy and dielectric functions (such as $Z^*,\;Y^*,\;M^*,\;\varepsilon^*$, and $tan\delta$). Admittance spectra and dielectric functions show two bulk traps of $Zn_i^{..}$ (0.20 eV) and $V^{\bullet}_o$ (0.29~0.33 eV) in ZnO-$Bi_2O_3-Mn_3O_4$ (ZBM). The barrier of grain boundaries in ZBM could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.79 eV at lower temperature to 1.08 eV at higher temperature. The grain boundary capacitance $C_{gb}$ was decreased slightly with temperature as 1.3~1.8 nF but resistance $R_{gb}$ decreased exponentially. The relaxation time distribution can result from the heterogeneity of the barriers constituting the varistor. It is revealed that Mn dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

Keywords

References

  1. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986).
  2. T. K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. R. Einzinger, Ann. Rev. Mater. Sci. 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  4. M. Inada and M. Matsuoka, Advances in Ceramics, Vol. 7 (Am. Ceram. Soc., Columbus, OH, 1983) p. 91.
  5. J. Han, P. Q. Mantas, and A. M. R. Senos, J. Euro. Ceram. Soc. 22, 49 (2002). https://doi.org/10.1016/S0955-2219(01)00241-2
  6. F. Greuter and G. Blatter, Semicond. Sci. Technol. 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  7. M. Andres-Verges and A. R. West, J. Electroceram. 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  8. Y.-W. Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 21, 738 (2008).
  9. Y.-W Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 23, 368 (2010).
  10. Y.-W Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 22, 949 (2009).
  11. Y. W. Hong and J. H. Kim, Ceram. Int. 30, 1307 (2004). https://doi.org/10.1016/j.ceramint.2003.12.026
  12. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994). https://doi.org/10.1016/0022-3697(94)90575-4
  13. Y.-W Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 22, 941 (2009).