DOI QR코드

DOI QR Code

Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics

기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향

  • Choi, Young-Hoon (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Woo, Sang-Kuk (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Han, In-Sub (Energy Materials Research Center, Korea Institute of Energy Research)
  • 최영훈 (서울시립대학교 신소재공학과) ;
  • 김영욱 (서울시립대학교 신소재공학과) ;
  • 우상국 (한국에너지기술연구원 에너지재료연구센터) ;
  • 한인섭 (한국에너지기술연구원 에너지재료연구센터)
  • Received : 2010.09.29
  • Accepted : 2010.10.29
  • Published : 2010.11.30

Abstract

Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

Keywords

References

  1. J. She, T. Ohji, and Z. Y. Deng, “Thermal Shock Behavior of Porous Silicon Carbide Ceramics,” J. Am. Ceram. Soc., 85 [8] 2125-27 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00418.x
  2. J. S. Lee, D. M. Choi, C. B. Kim, S. H. Lee, and S. C. Choi, “Growth of Silicon Carbide Nanowires on Porous Silicon Carbide Ceramics by a Carbothermal Reduction Process,” J. Ceram. Process. Res., 8 [2] 87-90 (2007).
  3. B. H. Yoon, C. S. Park, H. E. Kim, and Y. H. Koh, “In Situ Synthesis of Porous Silicon Carbide (SiC) Ceramics Decorated with SiC Nanowires,” J. Am. Ceram. Soc., 90 [12] 3759-66 (2007).
  4. M. Fukushima, Y. Zhou, Y. I. Yoshizawa, and K. Hirao, “Water Vapor Corrosion Behavior of Porous Silicon Carbide Membrane Support,” J. Eur. Ceram. Soc., 28 1043-48 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.023
  5. Y.-W. Kim, J. H. Eom, C. Wang, and C. B. Park, “Processing of Porous Silicon Carbide Ceramics from Carbon-Filled Polysiloxane by Extrusion and Carbothermal Reduction,” J. Am. Ceram. Soc., 91 [4] 1361-64 (2008). https://doi.org/10.1111/j.1551-2916.2008.02280.x
  6. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (in Korean),” J. Kor. Ceram. Soc., 45 [7] 430-37 (2008). https://doi.org/10.4191/KCERS.2008.45.7.430
  7. S. H. Chae, Y.-W. Kim, I. H. Song, H. D. Kim, J. S. Bae, S. M. Na, and S. I. Kim, “Low Temperature Processing and Properties of Porous Frit-Bonded SiC Ceramics(in Korean),” J. Kor. Ceram. Soc., 46 [5] 488-92 (2009). https://doi.org/10.4191/KCERS.2009.46.5.488
  8. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Aluminum Addition on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics(in Korean),” J. Kor. Ceram. Soc., 46 [5] 520-24 (2009). https://doi.org/10.4191/KCERS.2009.46.5.520
  9. G. S. Cho, G. M. Kim, and S. W. Park, “Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures(in Korean),” J. Kor. Ceram. Soc., 46 [5] 534-39 (2009). https://doi.org/10.4191/KCERS.2009.46.5.534
  10. M. K. Shin, I. S. Han, D. W. Seo, S. Kim, S. K. Woo, S. W. Lee, and Y.-W. Kim, “Fabrication and Properties of the SiC Candle Filter by Vacuum Extrusion and Ramming Process(in Korean),” J. Kor. Ceram. Soc., 46 [6] 662-67 (2009). https://doi.org/10.4191/KCERS.2009.46.6.662
  11. Y. S. Chun and Y.-W. Kim, “Processing and Mechanical Properties of Porous Silica-Bonded Silicon Carbide Ceramics,” Met. Mater. Int., 11 [5] 351-55 (2005). https://doi.org/10.1007/BF03027504
  12. J. H. Eom, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Submicron Silicon Carbide Powder Addition on the Processing and Strength of Reaction-Sintered Mullite-Silicon Carbide Composites,” J. Ceram. Soc. Jpn., 117 [4] 421-25 (2009). https://doi.org/10.2109/jcersj2.117.421
  13. Y. H. Choi, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Starting SiC Particle Size on Nitridation and Strength of Silicon Nitride-Bonded Silicon Carbide Ceramics (in Korean),” J. Kor. Ceram. Soc., 47 [2] 157-62 (2010). https://doi.org/10.4191/KCERS.2010.47.2.157
  14. K. S. Mazdiyazni and L. M. Brown, “Synthesis and Mechanical Properties of Stoichiometric Aluminum Silicate (Mullite),” J. Am. Ceram. Soc., 55 548-52 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb13434.x
  15. M. I. Osendi and C. Baudin, “Mechanical Properties of Mullite Materials,” J. Eur. Ceram. Soc., 16 217-24 (1996). https://doi.org/10.1016/0955-2219(95)00133-6
  16. S. H. Hong and G. L. Messing, “Development of Textured Mullite by Template Grain Growth,” J. Am. Ceram. Soc., 82 [4] 867-72 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01847.x
  17. Y.-W. Kim, H. D. Kim, and C. B. Park, “Processing of Microcellular Mullite,” J. Am. Ceram. Soc., 88 [12] 3311-15 (2005). https://doi.org/10.1111/j.1551-2916.2005.00597.x
  18. H. Schneider, J. Schreuer, and B. Hildmann, “Structure and Properties of Mullite-A Review,” J. Eur. Ceram. Soc., 28 329-44 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
  19. S. H. Kim, H. G. Bang, and S. Y. Park, “Synthesis of Mullite Whisker from Fly Ash(in Korean),” J. Kor. Ceram. Soc., 42 [11] 753-57 (2005). https://doi.org/10.4191/KCERS.2005.42.11.753
  20. S. Ding, S. Zhu, Y. Zeng, and D. Jiang, “Effect of $Y_{2}O_{3}$ Addition on the Properties of Reaction-Bonded Porous SiC Ceramics,” Ceram. Int., 32 461-66 (2006). https://doi.org/10.1016/j.ceramint.2005.03.024
  21. J. H. Eom, Y.-W. Kim, and, S. K. Woo, “Effect of Alumina Content on Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics,” J. Ceram. Process. Res., 10 [2] (2009).
  22. B. V. Manoj Kumar, J. H. Eom, Y.-W. Kim, I. S. Han, and S. K. Woo, “Effect of Aluminum Source on Flexural Strength of Mullite-Bonded Porous Silicon Carbide Ceramics,” J. Ceram. Soc. Jpn., 118 [1] 13-8 (2010). https://doi.org/10.2109/jcersj2.118.13
  23. Y. H. Choi, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Alkaline Earth Metal Oxide Addition on Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics,” J. Mater. Sci., 45 [24] 6841-44 (2010). https://doi.org/10.1007/s10853-010-4939-9
  24. S. H. Lee and Y.-W. Kim, “Processing of Cellular SiC Ceramics Using Polymer Microbeads,” J. Kor. Ceram. Soc., 43 [8] 458-62 (2006). https://doi.org/10.4191/KCERS.2006.43.8.458
  25. J. H. Eom and Y.-W. Kim, “Effect of Template Size on Microstructure and Strength of Porous Silicon Carbide Ceramics,” J. Ceram. Soc. Jpn., 116 [10] 1159-63 (2008). https://doi.org/10.2109/jcersj2.116.1159

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360