DOI QR코드

DOI QR Code

Effect of B4C Addition on the Microstructures and Mechanical Properties of ZrB2-SiC Ceramics

ZrB2-SiC 세라믹스의 미세구조와 기계적 물성에 미치는 B4C 첨가효과

  • Chae, Jung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kyung-Ja (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, Sahn (Department of Advanced Materials Engineering, Korea University) ;
  • Kim, Seong-Won (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 채정민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김경자 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 김성원 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2010.10.11
  • Accepted : 2010.10.25
  • Published : 2010.11.30

Abstract

$ZrB_2$ has a melting point of $3245^{\circ}C$ and a relatively low density of $6.1\;g/cm^3$, which makes this a candidate for application to ultrahigh temperature environments over $2000^{\circ}C$. Beside these properties, $ZrB_2$ is known to have excellent resistance to thermal shock and oxidation compared with other non-oxide engineering ceramics. In order to enhance such oxidation resistance, SiC was frequently added to $ZrB_2$-based systems. Due to nonsinterability of $ZrB_2$-based ceramics, research on the sintering aids such as $B_4C$ or $MoSi_2$ becomes popular recently. In this study, densification and high-temperature properties of $ZrB_2$-SiC ceramics especially with $B_4C$ are investigated. $ZrB_2$-20 vol% SiC system was selected as a basic composition and $B_4C$ or C was added to this system in some extents. Mixed powders were sintered using hot pressing (HP). With sintered bodies, densification behavior and high-temperature (up to $1400^{\circ}C$) properties such as flexural strength, hardness, and so on were examined.

Keywords

References

  1. M. J. Gasch, D. T. Ellerby, and S. M. Johnson, “Ultra High Temperature Ceramic Composites,” pp. 197-224 in Handbook of Ceramic Composite, Ed. by N. P. Bansal, Kluwer Academic Publishers, Boston/Dordrecht/London, 2005.
  2. W. G. Fahrenholtz and G. E. Hilmas, “Refractory Diborides of Zirconium and Hafnium,” J. Am. Ceram. Soc., 90 [5] 1347-64 (2007). https://doi.org/10.1111/j.1551-2916.2007.01583.x
  3. S.-Q. Guo, “Densification of $ZrB_2$-based Composites and Their Mechanical and Physical Properties: a Review,” J. Eur. Ceram. Soc., 29 995-1011 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
  4. A. Bellosi, F. Monteverde, D. D. Fabbriche, and C. Melandri, “Microstructures and Properties of $ZrB_2$-based Ceramics,” J. Mater. Proc. Man. Sci., 9 [2] 156-70 (2000). https://doi.org/10.1106/GRKW-RKM4-8CKE-QYET
  5. W.–W. Wu, G.–J. Zhang, Y.–M. Kan, and P.–L. Wang, “Reactive Hot Pressing of ZrB2–SiC–ZrC Composites at 1600${\circ}$C,” J. Am. Ceram. Soc., 91 [8] 2501-8 (2008). https://doi.org/10.1111/j.1551-2916.2008.02507.x
  6. J. J. Melendez-Martinez, A. Dominguez, F. Monteverde, C. Melandri, and G. de Portu, “Characterization and High Temperature Mechanical Properties of Zirconium Diboridebased materials,” J. Eur. Ceram. Soc., 22 2543-49 (2002). https://doi.org/10.1016/S0955-2219(02)00114-0
  7. A. Bellosi, F. Monteverde, and D. Sciti “Fast Densification of Ultra-high-temperature Ceramics by Spark Plasma Sintering,” Int. J. Appl. Ceram. Tech., 3 [1] 32-40 (2006). https://doi.org/10.1111/j.1744-7402.2006.02060.x
  8. V. Medri, F. Monterverde, A. Balbo, and A. Bellosi, “Comparison of $ZrB_2$-ZrC-SiC Composites Fabricated by Spark Plasma Sintering and Hot-pressing,” Adv. Eng. Mater., 7 [3] 159-63 (2005). https://doi.org/10.1002/adem.200400184
  9. S. Q. Guo, Y. Kagawa, T. Nichimura, D. Chung, and J.–M. Yang, “Mechanical and Physical Behavior of Spark Plasma Sintered ZrC-$ZrB_2$-SiC Multiphase Composites,” J. Eur. Ceram. Soc., 28 1279-85 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.009
  10. G. -J. Zhang, Z. –Y. Deng, N. Kondo, J. –F. Yang, and T. Ohji, “Reactive Hot Pressing of $ZrB_2$–SiC Composite,” J. Am. Ceram. Soc., 83 [9] 2330-32 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01558.x
  11. Q. Qiang, Z. Xinghong, M. Songhe, H. Wendo, H. Changqing, and H. Jiecai, “Reactive Hot Pressing and Sintering Characterization of $ZrB_2$–SiC–ZrC Composites,” Mater. Sci. Eng., A491 117-23 (2008).
  12. S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Pressureless Sintering of $ZrB_2$–SiC Ceramics,” J. Am. Ceram. Soc., 91 [1] 26-32 (2008). https://doi.org/10.1111/j.1551-2916.2007.02006.x
  13. Z.-G. Wang, W.-M. Guo, and G.-J. Zhang, “Pressureless Sintering Mechanism and Microstructure of $ZrB_2$–SiC Ceramics Doped with Boron,” Scripta Mater., 61 177-80 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.030
  14. S.-H. Kang, D.-H Lee, and D.-J. Kim, “Formation of $TiB_2$-SiC Ceramics from $TiB_2$-polycarbosilane Mixtures(in Korean),” J. Kor. Ceram. Soc., 45 [9] 544-48 (2008). https://doi.org/10.4191/KCERS.2008.45.9.544
  15. X. Zhang, Q. Qu, J. Han, W, Hao, and C. Hong, “Microstructural Features and Mechanical Properties of $ZrB_2$–SiC–ZrC Composites Fabricated by Hot Pressing and Reactive Hot Pressing,” Scripta Mater., 59 753-56 (2008). https://doi.org/10.1016/j.scriptamat.2008.06.004
  16. H. Zhang, Y. Yan, Z. Huang, X. Liu, and D. Jiang, “Pressureless Sintering of $ZrB_2$–SiC Ceramics: the Effect of $B_{4}C$ Content,” Scripta Mater., 60 559-62 (2009). https://doi.org/10.1016/j.scriptamat.2008.12.003
  17. H. Zhang, Y. Yan, Z. Huang, X. Liu, and D. Jiang, “Properties of $ZrB_2$-SiC Ceramics by Pressureless Sintering,” J. Am. Ceram. Soc., 92 [7] 1599-602 (2009). https://doi.org/10.1111/j.1551-2916.2009.03039.x
  18. L. Weng, X. Zhang, J. Han, W. Han, and C. Hong, “The Effect of $B_{4}C$ on the Microstructure and Thermo-mechanical Properties of $HfB_2$-based Ceramics,” J. Alloys Compd., 473 314-18 (2009). https://doi.org/10.1016/j.jallcom.2008.05.093
  19. S. Baik and P. F. Becher, “Effect of Oxygen on the Densification of $TiB_2$,” J. Am. Ceram. Soc., 70 [8] 527-30 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb05699.x
  20. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis, pp.267, Elsevier Science Publishing Co., Inc., New York, 1986.
  21. H. S. Kim, “On the Rule of Mixtures for the Hardness of Particle Reinforced Composites,” Mater. Sci. Eng., A289 30-3 (2000).

Cited by

  1. -based Ceramics for Ultra-high Temperature Applications vol.29, pp.3, 2012, https://doi.org/10.7736/KSPE.2012.29.3.273
  2. -SiC Ceramics Fabricated by Hot Pressing with Change in Ratio of Submicron to Nano Size of SiC vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.410
  3. Transmission Electron Microscopy Investigation of Hot-pressed ZrB2-SiC with B4C Additive vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.462