DOI QR코드

DOI QR Code

Analysis of Spatial-temporal Variability of NOAA/AVHRR NDVI in Korea

NOAA/AVHRR 정규식생지수의 시공간 변화도 분석

  • 김광섭 (경북대학교 공과대학 건축토목공학부) ;
  • 김종필 (경북대학교 공과대학 건축토목공학부)
  • Received : 2010.03.03
  • Accepted : 2010.05.01
  • Published : 2010.06.30

Abstract

The variability of vegetation is strongly related to the variability of hydrometeorological factors such as precipitation, temperature, runoff and so on. Analysis of the variability of vegetation will aid to understand the regional impact of climate change. Thus we analyzed the spatial-temporal variability of NOAA(National Oceanic and Atmospheric Administration)/AVHRR(Advanced Very High Resolution Radiometer) NDVI(Normalized Difference Vegetation Index). In the results from Mann-Kendall test, there is no significant linear trend of annual NDVI from 1982 to 2006 in the most area except the downward trend on the significance level 90% in the Guem-river basin area. In addition, using EOF(Empirical Orthogonal Function) analysis, the variability of NDVI in the region of higher latitude and altitude is higher than that in the other region since the spatial variability of NDVI follows the latitudinal gradient. Also we could get higher NDVI in June, July, August and September. We had the highest NDVI in Han-river basin area and the lowest in Je-Ju island.

식생의 변화는 강수, 기온, 유출 등의 수문기상변수들의 변화와 상당히 밀접한 연관성을 가지고 있다. 식생의 변화에 대한 분석은 곧 기후변화의 지역적 영향을 이해하는데 큰 도움이 될 것이다. 따라서 본 연구에서는 우리나라 지역에 대해서 NOAA/AVHRR 정규식생지수(NDVI)의 시공간변화도를 분석하였다. Mann-Kendall 검정을 이용한 연평균 정규식생지수의 추세분석결과는 대상기간(1982년~2006년)동안 대부분의 유역에서 통계적 유의성을 가진 선형적인 추세변화는 없는 것으로 나타났으나, 금강유역에서 통계적 신뢰수준 90%의 하향추세가 있었다. 또한 EOF 분석을 이용한 주성분분석결과 북쪽지역으로 갈수록 표고가 높을수록 식생의 변화도가 큰 것으로 나타났다. 이는 지형변화에 상관성이 높은 연평균 정규식생지수의 공간분포와 달리 위경도 변화에 대응하는 분산분포 변화특성에 기인한 것으로 판단된다. 계절별로는 6월~9월까지의 정규식생지수가 높게 나타났으며, 이 기간 중에서 7월경에 다소 감소하는 경향을 보여주었다. 유역별로는 한강유역의 정규식생지수가 가장 높았으며, 제주도가 가장 낮은 것으로 나타났다.

Keywords

References

  1. 기상청(2008) 기후변화의 이해와 기후변화 시나리오 활용(1). pp. 9-10.
  2. 김경탁, 박정술(2006) 식생지수와 가뭄지수의 상관성 분석. 한국습지학회논문집, 한국습지학회, 제8권 제1호, pp. 49-58.
  3. 박정술, 김경탁(2009) 가뭄모니터링을 위한 MODlS NDVl의 활용성 평가: 가뭄지수와의 비교를 중심으로. The Journal of GIS Association of Korea, Vol. 17, No. 1, pp. 117-129.
  4. 신사철, 김철준(2003) 우리나라에서의 가뭄 발생 지역 판별을 위한 식생지수(NDVI)의 적용성에 관한 연구, 한국수자원학회논문집, 한국수자원학회, 제36권 제5호, pp. 839-849.
  5. 신사철, 황만하, 고익환, 이상진(2006) 식생 및 기온정보를 조합한 증발산량 산정을 위한 간편법 제안, 한국수자원학회논문집, 한국수자원학회, 제39권 제 4호, pp. 363-372.
  6. 유철상, 김대하, 김상단(2006) EOF 해석 및 다변량시계열 모형을 이용한 농업가뭄 대비능력의 평가, 한국수자원학회논문집, 한국수지원학회, 제39권 제7호, pp. 617-626.
  7. Avely, T. E. and Berlin, G.L. (1992) Fundamentals of remote sensing and airphoto interpretation. Macmillan Publishing Company. New York, pp. 476.
  8. Baldi, G., Nosetto, M.D., Aragon, R., Aversa, F., Paruelo, J.M., and Jobbagy, E.G (2008) Long-term satellite NDVI data sets: Evaluating their ability to detect ecosystem functional changes in Soulth America. Sensors, Vol. 8, pp. 5397-5425. https://doi.org/10.3390/s8095397
  9. Ding, M., Zhang, Y., Liu, L., Zhang, W., Wang, Z., and Bal, W. (2007) The relationship between NDVl and precipitation on the Tibetan Plateau. Journal of Geographical Sciences, Vol. 17, No. 3. pp. 259-268. https://doi.org/10.1007/s11442-007-0259-7
  10. Eidenshink, J.C. (1992) The 1990 conterminous US AVHRR dataset. Photogrammetric Engineering and Remote Sensing, Vol. 58, pp. 809-813.
  11. El Saleous, N.Z., Vermote, E.F., Justice, C.O., Townshend, J.R.G, Tucker, C.J., and Goward, S.N. (2000) Improvements in the global biospheric record from the Advanced Very High Resolution Radiometer (AVHRR), International Journal of Remote Sensing, Vol. 21 , pp. 1251-1277. https://doi.org/10.1080/014311600210164
  12. Gibbons, J.D. (1990) Handbook of statistical methods for engineers and scientists, McGrawHill, ed. pp. 11.1-11.26.
  13. Hirsch, R.M. and Slack, J.R. (1984) A nonparametric trend test for seasonal data with serial dependence, Water Resources Research, Vol. 20, pp. 727-732 https://doi.org/10.1029/WR020i006p00727
  14. James, M.E. and Kalluri, S.N.V. (1994) The Pathfinder AVHRR land dataset: an improved coarse resolution dataset for terrestrial monitoring, International Journal of Remote Sensing, Vol. 15, pp. 3347-3363. https://doi.org/10.1080/01431169408954335
  15. Karabulut, M. (2003) An examination of relationships between vegetation and rainfall using maximum vaule composite AVHRR-NDVI data, Turkish Journal of Botany, Vol. 27. pp. 93-101.
  16. Liu, H.Q. and Huete, A.R. (1995) Feedback based modification of the NDVI to minimize canopy background and atmospheric noise. lEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, pp. 457-465. https://doi.org/10.1109/36.377946
  17. Los, S.O., Collatz, G.J., Sellers, P.J., Malmstrom, N.H., Pollack, N.H., DeFries, R.S., Bounoua, L., Parris, M.T., Tucker, C.J., and Dazlich, D.A. (2000) A global 9-year biophysical land-surface dataset from NOAA AVKRR data. Journal of Hydrometeorology, Vol. 1, pp. 183-199. https://doi.org/10.1175/1525-7541(2000)001<0183:AGYBLS>2.0.CO;2
  18. Mann, H.B. (1945) Nonparametric tests against trend. Econometrica, Vol. 13, pp. 245-259. https://doi.org/10.2307/1907187
  19. Nemani, R.R., White, M.A., Thornton. P.E., Nishida, K., Reddy, S., Jekins, J., and Running, S. (2002) Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, Vol. 29, 10.1029/ 2002GL01487.
  20. Parmiggiani, F., Quarta, G, Marra, G.P., and Conte, D. (2006) NDVI fluctuations from 1995 to 2006 in South Italy and North Africa: a search for a climate change indicator. Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII. Proceedings of the SPIE, Vol. 6359.
  21. Pinzon, J. (2002) Using HHT to successfully uncouple seasonal and interannual components in remotely sensed data. SCI 2002, Conference Proceedings Jul. pp. 14-18. Orlando, Florida.
  22. Pinzon, J., Brown, M.E., and Tucker, C.J. (2004) Satellite time series correction of orbital drift artifacts using empirical mode decomposition. In Hilbert-Huang Transforrn: lntroduction and Applications, eds. N. Huang, pp. Chapter 10, Part II, Applications (to appear).
  23. Rouse, J.W., Haas, R.W., Schell, J.A., Oeering, D.W., and Harlan, J.C. (1974) Monitoring the venal advancement and retrogradations (Greenwave effect) of natural vegetation. NASA/GSFCT Type III Final Report, Greenbelt, MD, USA.
  24. Sellers, P.J. (1985) Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, Vol. 6, pp. 1335-1372. https://doi.org/10.1080/01431168508948283
  25. Sellers, P.J. (1994) A global $1^{\circ}$ by $1^{\circ}$ NDVI dataset for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing, Vol. 15, pp. 3519-3545. https://doi.org/10.1080/01431169408954343
  26. Slayback, D.A., Pinzon, J.E., Los, S.O., and Tucker, C.J. (2003) Northern hemisphere photosynthetic trends. 1982-1999 Global Change Biology, Vol. 9, pp. 1-15. https://doi.org/10.1046/j.1365-2486.2003.00507.x
  27. Szilagyi, J., Rundquist, D.C., and Gosselin, D.C. (1998). NDVI relationship to monthly evaporation. Geophysical Research Letters, Vol. 25, No. 10, pp. 1753-1756. https://doi.org/10.1029/98GL01176
  28. Tourre, Y.M., Jarlan, L., Lacaux, J-P., Rotela, C.H., and Lafaye, M (2008) Spatio-temporal variability of NDVl-precipitation over southernmost South America: possible linkages between climate signals and epidemics. Environmental Research Letters, Vol. 3, 044008.
  29. Tucker, C.J. (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, Vol. 8, pp. 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  30. Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D., Pak, E.W., Mahoney, R., Vermote, E., and El Saleous, N (2005) An extended AVHRR 8-km NDVI datast compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, Vol. 26, No. 20, pp. 4485-4498. https://doi.org/10.1080/01431160500168686
  31. Van den Hurk, B., Viterbo, J.J.M., and Los, S.O. (2003) Impact of leaf area index seasonality in the annual land surface evaporation in a global circulation model. Journal of Geophysical Research. Vol. 108, pp. 4191-4199. https://doi.org/10.1029/2002JD002846
  32. Wang, J., Rick, P.M., and Price, K.P. (2003) Temporal response of NDVI to precipitation and temperature in the centeral Great Plain, USA. International Journal of Remote Sensing, Vol. 24, No. 11, pp. 2345-2364. https://doi.org/10.1080/01431160210154812