DOI QR코드

DOI QR Code

Study on Optimum Mixture Design for Service Life of RC Structure subjected to Chloride Attack - Genetic Algorithm Application

염해에 노출된 콘크리트의 내구수명 확보를 위한 최적 배합 도출에 대한 연구 - 유전자 알고리즘의 적용

  • Received : 2009.09.22
  • Accepted : 2010.07.10
  • Published : 2010.10.31

Abstract

A control of chloride diffusion coefficient is very essential for service life of reinforced concrete (RC) structures exposed to chloride attack so that much studies have been focused on this work. The purpose of this study is to derive the intended diffusion coefficient which satisfies intended service life and propose a technique for optimum concrete mixture through genetic algorithm(GA). For this study, 30 data with mixture proportions and related diffusion coefficients are analyzed. Utilizing 27 data, fitness function for diffusion coefficient is obtained with variables of water to binder ratio(W/B), weight of cement, mineral admixture(slag, flay ash, and silica fume), sand, and coarse aggregate. 3 data are used for verification of the results from GA. Average error from fitness function is observed to 18.7% for 27 data for diffusion coefficient with 16.0% of coefficient of variance. For the verification using 3 data, a range of error for mixture proportions through GA is evaluated to 0.3~9.3% in 3 given diffusion coefficients. Assuming the durability design parameters like intended service life, cover depth, surface chloride content, and replacement ratio of mineral admixture, target diffusion coefficient, where exterior conditions like relative humidity(R.H.) and temperature, is derived and optimum design mixtures for concrete are proposed. In this paper, applicability of GA is attempted for durability mixture design and the proposed technique would be improved with enhancement of comprehensive data set including wider range of diffusion coefficients.

콘크리트의 염화물 확산계수의 제어는 염해에 노출된 콘크리트 구조물의 내구수명 확보에 필수적이며, 이를 위해 많은 연구가 진행되어 왔다. 본 연구는 목표 내구수명을 만족하는 목표확산계수를 도출하고 유전자 알고리즘을 통하여, 최적배합을 도출하는데 있다. 이를 위하여, 동일한 골재 및 혼화재를 사용한 30개의 배합과 그에 따른 염화물 확산계수를 분석하였으며, 27개를 대상으로 확산계수 예측식을 도출하였다. 확산계수 예측식의 변수로는 물-결합재비, 단위 혼화재량(슬래그, 플라이 애쉬, 실리카퓸), 단위 시멘트량, 단위 잔골재 및 굵은 골재량을 포함하도록 하였으며 나머지 3개의 배합에 대하여 검증을 수행하였다. 최적 함수식은 27개의 배합에 대하여 평균 18.7%의 오차와 16.0%의 변동계수를 보이고 있었다. 주어진 3개의 확산계수에 대하여, 유전자 알고리즘을 통하여 도출된 배합은 0.3%~12.2%의 오차범위를 가지며 각각의 배합인자를 도출하였다. 최종적으로 서로 다른 내구성 설계변수(목표내구수명, 피복두께, 표면염화물량, 혼화재량)와 노출환경(온도 및 습도)을 가정하여 목표 확산계수를 도출하였으며, 이에 만족하는 최적화된 콘크리트 배합을 제안하였다. 본 연구에서는 유전자 알고리즘을 이용하여, 내구성 콘크리트 배합도출에 대한 적용성을 평가하였으며, 제안된 기법은 다양한 확산계수의 범위를 가지는 광범위한 자료구축을 통하여 개선될 것이다.

Keywords

References

  1. 권성준, 박상순(2008) 실태조사를 통한 항만 콘크리트 구조물의 균열부 확산계수 추정에 대한 연구, 대한토목학회논문집, 대한토목학회, 제27권 제5A호, pp. 745-751.
  2. 김승억, 마상수(2003) 유전자 알고리즘을 이용한 비선형 비탄성 최적설계, 대한토목학회논문집, 대한토목학회, 제23권 제5A호, pp. 841-850.
  3. 삼성건설(2003) 고내구성 콘크리트 염소이온 확산특성 평가, 연구보고서, 삼성건설 기술연구소
  4. 송하원, 권성준, 변근주, 박찬규(2005) 혼화재를 사용한 고성능 콘크리트의 배합특성을 고려한 염화물 확산 해석기법에 관한 연구. 대한토목학회논문집, 대한토목학회, 제25권 제1A호, pp. 213-223.
  5. 윤영묵, 김병헌(2004) 2차 비탄성 해석과 유전자 알고리즘을 이용한 평면 강골조 구조물의 최적설계, 대한토목학회논문집, 대한토목학회, 제24권 제1A호, pp. 87-100.
  6. 임철현, 윤영수, 이승훈, 손유신(2002) 고성능 콘크리트 배합에서의 유전자 알고리즘의 적용, 한국콘크리트학회 봄 학술발표회, 한국콘크리트학회, Vol. 1, pp. 551-556.
  7. 한국콘크리트학회(2004) 콘크리트 표준시방서-내구성편. 건설교통부
  8. 横関康祏, 岡田浩司, 堤知明, 渡邊賢三(1998), ひび割れを有する え鐵筋コンクリ一卜の鹽化物浸透擧動と壽命豫測に關する検討, コンクリ一卜構造物のリハビリテ一シヨンに關すゐシンポジウム論文集, 10, pp. 1-6.
  9. ASTM C 1202 (1997) Annual Book of ASTM Standards, v.04.02.
  10. Broomfield, J.P. (1997) Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1997.
  11. Cantu'-Paz, E. and Goldberg, D.E. (2000) Efficient parallel genetic algorithms: theory and practice, Computer Methods Applied Mechanics Engineering, Vol. 186, pp. 221-238. https://doi.org/10.1016/S0045-7825(99)00385-0
  12. Goldberg, D.E. (1989) Genetic algorithms in search, optimization and machine learning, Addison-Welsley, Reading, MA.
  13. JSCE-Concrete committee (2002) Standard Specification for Concrete Structures.
  14. Kwon, S.-J., Na, U.J., Park, S.S., and Jung, S.H. (2009) Service life prediction of concrete wharves with early-aged crack : probabilistic approach for chloride diffusion, Structural Safety, Vol. 31, No. 1, pp. 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  15. Lim, C.-H., Yoon, Y.-S., and Kim, J.-H. (2004) Genetic algorithm in mix proportioning of high-performance concrete, Cement and Concrete Research, Vol. 34, pp. 409-420. https://doi.org/10.1016/j.cemconres.2003.08.018
  16. Mathworks (2007) Genetic Algorithm and Direct Search Toolbox 2, User s Guide, The Mathworks. Inc.
  17. Metha, K. and Monteiro, P.J.M. (1993) Concrete: Structure, Properties, and Materials, Vol. 2, Prentice Hall, New Jersy.
  18. Poulsen, E. (1993) On a model of chloride ingress into concrete, Nordic Miniseminar-Chloride Transport, Department of Building Materials, Chalmers University of Technology, Gothenburg: pp. 1-12.
  19. RILEM (1994) Durability design of concrete structures. Report of RILEM Technical Committee 130-CSL, E&FN.
  20. Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993) Analysis of chloride diffusion into partially saturated concrete, ACI Materials Journal, Vol. 90, pp. 441-451.
  21. Song, H.-W. and Kwon, S.-J. (2009) Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure, Cement and Concrete Research, Vol. 39, pp. 812-824.
  22. Song, H.-W., Back, S.-W., Lee, C.-H., and Kwon, S.-J. (2006) Service life prediction of concrete structures under marine environment considering coupled deterioration, J of Restoration of Buildings and Monuments, Vol. 12, No. 4, pp. 265-284. .
  23. Stewart, M.G. and Mullard, J.A. (2007) Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures, Engineering Structures, Vol. 29, pp. 1457-1464 https://doi.org/10.1016/j.engstruct.2006.09.004
  24. Stewart, M.G. (2004) Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure, Structural Safety, Vol. 26, pp. 453-470. https://doi.org/10.1016/j.strusafe.2004.03.002
  25. Stewart, M.G. and Rosowsky, D.V. (2004) Time-dependent reliability of deteriorating reinforced concrete bridge decks, Structural Safety, Vol. 20, pp. 91-109.
  26. Sudret, B., Defaux, G, and Pendola, M. (2005) Time-variant finite element reliability analysis - application to the durability of cooling towers, Structural Safety, Vol. 27, pp. 93-112. https://doi.org/10.1016/j.strusafe.2004.05.001
  27. Tang, L. (1996) Electrically accelerated methods for determining chloride diffusivity in concrete-current development, Magazine of Concrete Research, Vol. 48, No. 176, pp. 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  28. Tang, L. and Joost, G. (2007) On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete. Cement and Concrete Research, Vol. 37, pp. 589-595. https://doi.org/10.1016/j.cemconres.2007.01.006
  29. Tang, L. and Nilsson, L.O. (1993) Chloride binding capacity and binding isotherms of OPC paste and mortar, Cement and Concrete Research, Vol. 23, No. 2, pp. 347-353. https://doi.org/10.1016/0008-8846(93)90100-N
  30. Thomas M.D.A. and Bamforth P.B. (1999) Modeling chloride diffusion in concrete: Effect of fly ash and slag, Cement and Concrete Research, Vol. 29, pp. 487-95. https://doi.org/10.1016/S0008-8846(98)00192-6
  31. Thomas, M.D.A. and Bentz, E.C. (2002) Computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides-Life365 Manual, SFA.
  32. Yeh, I-C. (2007) Computer-aided design for optimum concrete mixtures, Cement and Concrete Composites, Vol. 29, pp. 193-202. https://doi.org/10.1016/j.cemconcomp.2006.11.001