DOI QR코드

DOI QR Code

Analysis on DC Glow Discharge Properties of Ar Gas at the Atmosphere Pressure

대기압 Ar 가스의 직류 글로우 방전 특성분석

  • Received : 2010.10.05
  • Accepted : 2010.11.23
  • Published : 2010.12.01

Abstract

Atmosphere Plasma of Gas Discharge (APGD) has been used in plasma sources for material processing such as etching, deposition, surface modification and so on due to having no thermal damages. The APGD researches on AC source with high frequency have been mainly processed. However, DC APGD studies have been not. In order to understand APGD further, it is necessary to study on fundamental properties of DC APGD. In this paper, we developed a one-dimensional fluid simulation model with capacitively coupled plasma chamber at the atmosphere pressure (760 [Torr]). Nine kinds of Ar discharge particles such as electron (e), positive ions ($Ar^+$, $Ar_2^+$) and neutral particles ($Ar_m^*$, $Ar_r^*$, $Ar_h^*$, $Ar_2^*$(1), $Ar_2^*$(3) and Ar gas) are considered in the computation. The simulation was worked at the current range of 1~15 [mA]. The characteristics of voltage-current were calculated and the structure of Joule heating were discussed. The spatial distributions of Ar DC APGD and the mechanism of power consumption were also investigated.

Keywords

References

  1. M. J. Pinheiro and A. A. Martins, "Electrical and kinetic model of an atmospheric rf device for plasma aerodynamics applications", J. Appl. Phys., Vol. 108, pp. 033301 (2010) https://doi.org/10.1063/1.3383056
  2. 김재혁, 진상일, 김영민, "대기압 플라즈마 발생시 인가전압의 상승시간에 따른 영향", 전기학회논문지, Vol.57, No. 7, pp. 1218-1222 (2008)
  3. 한성호, 김영민, 김재혁, "대기압 플라즈마 발생용 마이크로 전극 제작 및 저전압 동작 특성", 전기학회논문지, Vol. 56, No. 4, pp. 773-776 (2007)
  4. S. Kanazawa, M. Kogoma, T. Moriwaki and S. Okazaki, "Stable glow plasma at atmospheric pressure", J. Phys. D: Appl. Phys., Vol. 21, pp. 838-840 (1998)
  5. X. Yuan and L. Raja, "Role of trace impurities in large-volume nobel gas atmoshpheric-pressure glow discharges", Appl. Phys. Lett., Vol. 81, pp. 814-816 (2002) https://doi.org/10.1063/1.1497445
  6. J. Park, I. Henins, H.W. Herrmann and S. Selwyn, "Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source", J. Appl. Phys., Vol. 89, pp.20 (2001) https://doi.org/10.1063/1.1323753
  7. M. Moravej, X.Yang, R.F.Hicks, J.Penelon and S.E.Babayan, "A radio-freqency nonequilibrium atmospheric pressure plasma operating with argon and oxygen", J. Appl. Phys., Vol. 99, pp. 093305 (2006) https://doi.org/10.1063/1.2193647
  8. H-B. Wang, W-T. Sun, H-P. Li, C-Y. Bao, X. Gao and H-Y. Luo, "Discharge characteristics of atmospheric pressure radio frequency glow discharges with argon/nitrogen", Appl. Phys. Lett., Vol. 89, pp. 161504 (2006) https://doi.org/10.1063/1.2362631
  9. J. J. Shi, X. T. Deng, R. Hall, J. D. Punnett and M. G. Kong, "Three modes in a radio frequency atmospheric pressure glow discharge", J. Appl. Phys., Vol. 94, pp.6303 (2003) https://doi.org/10.1063/1.1622110
  10. F. Tochikubo, T. chiga and T. Watanabe, "Structure of low-frequency helium glow discharge at atmospheric pressure between parallel plate dielectric electrodes", Jpn. J. Appl. Phys., Vol. 38, pp. 5244-5250 (1999) https://doi.org/10.1143/JJAP.38.5244
  11. A. Oda and T. Kimura, "One-dimensional Fluid Simulation of Atmospheric-Pressure Helium DC Glow Discharges", IEEJ Trans. FM, Vol. 129, No. 4 (2009)
  12. Y. Sakai, S. Sawada and H. Tgashira, "Effect of Penning ionization on electron swarm in Ar/Ne mixtures: Boltzmann equation analysis", J. Phys. D: Appl. Phys., Vol. 19, pp. 1741-1750 (1986) https://doi.org/10.1088/0022-3727/19/9/018
  13. N. Sato and H. Tagashira, "A hybrid Monte-Carlo/fluid model of RF plasmas in a SiH4/H2 miture", IEEE Trans. Plasma Sci. Vol. 19, pp. 102-112 (1991) https://doi.org/10.1109/27.106803
  14. E. V. Karoulina and Yu. A. Lebedev, "Computer simulation of microwave and DC plasmas: Comparative characterisation of plasmas", J. Phys. D: Appl. Phys., Vol. 25, pp.401-412 (1992) https://doi.org/10.1088/0022-3727/25/3/010
  15. R. Morrow and N. Sato, "The discharge current induced by the motion of charged particles in time-dependent electric fields", J. Phys. D: Appl. Phys., Vol. 32, pp. L20-22 (1999) https://doi.org/10.1088/0022-3727/32/5/005
  16. Q. Wang, D.J.Economou and V.M.Donnelly, "Simulation of a direct current microplasma dicharge in helium at atmospheric pressure", J. Appl. Phys., Vol. 100, pp. 023301 (2006) https://doi.org/10.1063/1.2214591