Effect of Trace Metal on Accumulation and Physiological Response of the Polychaete, Perinereis nuntia

미량금속 노출에 따른 갯지렁이(Perinereis nuntia)의 미량금속 축적 및 생리학적인 반응

  • Won, Eun-Ji (Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University) ;
  • Ra, Kong-Tae (Marine Environment & Pollution Prevention Research Department, Korea Ocean Research and Development Institute (KORDI)) ;
  • Hong, Seong-Jin (Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University) ;
  • Kim, Kyung-Tae (Marine Environment & Pollution Prevention Research Department, Korea Ocean Research and Development Institute (KORDI)) ;
  • Lee, Jae-Seong (Department of Chemistry, Hanyang University, College of Natural Sciences) ;
  • Shin, Kyung-Hoon (Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University)
  • 원은지 (한양대학교 과학기술대학 해양환경과학과) ;
  • 나공태 (한국해양연구원 해양환경.방제연구부) ;
  • 홍성진 (한양대학교 과학기술대학 해양환경과학과) ;
  • 김경태 (한국해양연구원 해양환경.방제연구부) ;
  • 이재성 (한양대학교 자연과학대학 화학과) ;
  • 신경훈 (한양대학교 과학기술대학 해양환경과학과)
  • Received : 2010.08.11
  • Accepted : 2010.11.18
  • Published : 2010.11.25

Abstract

Metal exposure experiments using polychaete (Perinereis nuntia) as a bio-indicator of trace metals contamination were conducted to evaluate the bioaccumulation and the biomarkers responses such as metallothionein-like protein (MTLPs) and glutathione S-transferase (GST) which was simultaneously exposed to Cadmium (Cd) and Copper (Cu). Cu and Cd concentrations in polychaete were enhanced with increasing exposure time and their concentrations of aqueous medium. Initial accumulation of Cd was higher than that of Cu. Our results showed that the bioaccumulation of Cu and Cd were prohibited, especially at higher Cu levels, suggesting the different cellular uptake mechanisms when Cu and Cd are co-exist. Net accumulation rate of Cu was declined with exposure time but it did not show any significant change for Cd. Although the highest MTLPs concentration was observed at 6 hr of exposure time, it did not show any significant change related to exposure times and metals concentrations. An increase of GST activity tended to increase as a function of exposure time and metals concentrations. And GST activities in P. nuntia have similar tendency with bioconcentration factors in high concentration of Cu (treatment group IV) at post 24 h of exposure. Our results provide new information of the bioaccumulation and biomarker responses to understand the effects of co-existing contaminants (Cu and Cd) using polychaete. Further studies are required to elucidate the bioaccumulation and biomarkers responses for various contaminants.

환경 내 미량금속 오염의 지표생물로 널리 이용되고 있는 갯지렁이의 체내 미량금속 축적 및 생체지표 변화를 연구하기 위하여 구리와 카드뮴에 혼합 노출시킨 Perinereis nuntia의 체내 미량금속의 농도, 금속결합 단백질(metallothioneinlike proteins, MTLPs) 및 항산화효소 중 하나인 글루타치온 S-전이효소(glutathione S-transferase, GST)를 분석하였다. 갯지렁이 체내 미량금속의 농도는 노출 시간과 농도에 따라 증가하였으며, 특히 카드뮴 노출 초기의 축적률과 시간에 따른 증가율이 구리에 비해 높았다. 시간에 따른 미량금속 체내 축적률(net accumulation rate)은 카드뮴의 경우 초기에 높은 값을 보인 후 시간에 따른 증감이 보이지 않았으나, 구리는 노출시간이 증가함에 따라 감소하는 경향을 보였다. 노출시킨 구리의 농도에 따라 두 원소의 축적이 저해되었으며, 이는 원소에 따라 다른 체내 흡수 기작이 있음을 보여주고 있다. 금속결합 단백질은 노출 후 6 시간째 가장 높은 농도를 보였으며 이후 노출시간 증가에 따라 감소하는 경향을 보였으나, 구리의 농도를 $100{\mu}g/L$, $200{\mu}g/L$으로 처리한 실험군의 48 시간째를 제외하고 노출시간과 농도에 따라 유의한 변화를 보이지 않았다. 항산화효소인 글루타치온 S-전이효소의 경우 시간과 농도에 따라 증가하는 경향을 보였으며 갯지렁이 체내 미량금속의 농축 비와 유사하게 높은 구리 농도에서 24 시간 이후 감소하는 경향을 보였다. 본 연구를 통해 구리와 카드뮴이 동시에 영향을 미칠 때 P. nuntia의 체내 미량 금속의 축적과 생체지표의 반응에 대한 정보를 얻을 수 있었으며, 향후 다양한 오염물질에 대한 체내 축적 및 생체지표를 이해하기 위한 연구가 요구된다.

Keywords

References

  1. 한수정, 이인숙, 2001, "총알고등에서 카드뮴과 아연의 축적과 제거", 한국생태학회지, Vol.24, 35-43.
  2. Ait, A., Mouneyrac, C., Durou, C., Moukrim, A. and Pellerin, J., 2006, "Tolerance and biomarkers as useful tools for assessing environmental quality in the Oued Souss estuary (Bay of Agadir. Morocco)", Comp. Biochem and Physiol., Vol.143, 23-29.
  3. Bradford, M.M., 1976, "A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding", Anal. Biochem., Vol.72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brown, C.L. and Luoma, S.N., 1995, "Use of the euryhaline bivalves Potomocorbula amurens is as a biosentinel species to assess trace metal concentration in SanFrancisco Bay", Mar. Ecol. Prog. Ser., Vol.12, 129-142.
  5. Cousins, R.J., 1985, "Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin", Physiol. Rev., Vol.65, 238-309. https://doi.org/10.1152/physrev.1985.65.2.238
  6. Elliott, N.G., Swain, R. and Rits. D.A., 1986, "Metal interaction during accumulation by the mussel Mytilus edulis planulatus", Mar. Biol., Vol.93, 395-399. https://doi.org/10.1007/BF00401107
  7. Engel, D.W., 1999, "Accumulation and cytosolic partitioning of metals in the American oyster Crassostrea virginica", Mar. Environ. Res., Vol.47, 89-102. https://doi.org/10.1016/S0141-1136(97)00100-1
  8. Freedman, J.H., Ciriolo, M.R. and Peisach, J., 1989, "The role of glutathione in copper metabolism and toxicity", J. Biol. Chem., Vol.264, 5598-5605.
  9. Ferreira, A.M., Ciriolo, M.R., Marcocci, L. and Rotilio, G., 1993, "Copper (I) transfer into metallothionein mediated by glutathione", Biochem. J., Vol.292, 673-676. https://doi.org/10.1042/bj2920673
  10. Gnandi, K., and Tobschall, H.J., 1999, "The pollution of marine sediments by trace elements in the coastal region of Togo caused by dumping of cadmium-rich phosphorite tailing in to the sea", Environ. Geol., Vol.38, 13-24. https://doi.org/10.1007/s002540050396
  11. Hopkin, S.P., 1989, Ecophysiology of Metals in Terrestrial Invertebrates, Pollution Monitoring Series; Mellanby, K., Ed.; Elsevier Applied Science: New York.
  12. Kraak, M.H.S., Lavy, D., Peeters, W.H.M. and Davids, C. 1992, "Chronic ecotoxicity of copper and cadmium to the zebra mussel Dreissena polymorpha", Arch. Environ. Contam. Toxicol., Vol.23, 363-369. https://doi.org/10.1007/BF00216246
  13. Langston, W.J., Bebianno, M.J. and Burt, G.R., 1998, Metabolic pathways in marine invertebrates. In Langston, W.J. and Bebianno, M.J. (eds), Metal Metabolism in the Aquatic Environment, Chapman and Hall, London U.K., pp.219-248.
  14. Lecoeur, S., Videmann, B. and Berny, Ph., 2004, "Evaluation of metallothionein as a biomarker of single and combined Cd/Cu exposure in Dreissena polymorpha", Environ. Res., Vol.94, 184-191. https://doi.org/10.1016/S0013-9351(03)00069-0
  15. Lotufo, G.R., Farrar, J.D., Inouye, L.S., Bridges, T.S. and Ringelberg, D.B., 2001, "Toxicity of sediment-associated nitroaromatic and cyclonitramine compounds to benthic invertebrates", Environ. Toxicol. Chem., Vol.20, 1762-1771. https://doi.org/10.1002/etc.5620200820
  16. Marcano, L., Nusettia, O., Rodríguez-Graub, J. and Vilasb, J., 1996, "Uptake and depuration of copper and zinc in relation to metal-binding protein in the polychaete Eurythoe complanata", Comp. Biochem. Physiol., Vol.114, 179-184
  17. Martin-Diaz, M.L., Blasco, J., Sales, D. and Delvalls, T.A., 2007, "Biomarkers study for sediment quality assessment in spanish ports using the crab Carcinus maenas and the clam Ruditapes philippinarum", Arch. Environ. Contam. Toxicol., Vol.53, 66-76. https://doi.org/10.1007/s00244-006-0121-4
  18. Mosleh, Y.Y., Paris-Palacois, S. and Biagianti-Risbourg, S., 2006, "Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaete, Tubificidae) exposed to copper", Chemosphere, Vol.64, 121-128. https://doi.org/10.1016/j.chemosphere.2005.10.045
  19. Morillo, J., Usero, J. and Gracia, I., 2004, "Heavy metal distribution in marine sediments from the southwest coast of Spain", Chemosphere, Vol.55, 431-442. https://doi.org/10.1016/j.chemosphere.2003.10.047
  20. Peakall, D.B. and Shugart, L.R., 1993, Biomarkers: Research and Application in the Assessment of Environmental Health. Springer-Verlag, Berlin.
  21. Posthuma, L. and vanStraalen, N.M., 1993, "Heavy metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences", Comp. Biochem. Physiol., Vol.100C, 11-38.
  22. Regoli, F., Nigro, M., Bertoli, E., Principato, G. and Orlando, E., 1997, "Defences against oxidative stress in the Antartic scallop Adamussium colbecki and effects of acute exposure to metals", Hydrobiologia, Vol.355, 139-144. https://doi.org/10.1023/A:1003094515903
  23. Sarkar, A., Ray, D., Shrivastava, A.N. and Sarker, S., 2006, "Molecular Biomarkers: their significance and application in marine pollution monitoring", Ecotoxicology, Vol.15, 333-340. https://doi.org/10.1007/s10646-006-0069-1
  24. Sato, M. and Nakashima, A., 2003, "A review of Asian Hediste Species complex (Nereididae, Polychaete) with descriptions of two new species and a rediscription of Hediste japonica (Izuka, 1908)", Zool. J. Limn. Soc., Vol.137, 403-445. https://doi.org/10.1046/j.1096-3642.2003.00059.x
  25. Serafim, M.A., Company, R.M., Bebianno, M.J. and Langston, W.J, 2002, "Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium", Mar. Environ. Res., Vol.54, 361-365. https://doi.org/10.1016/S0141-1136(02)00121-6
  26. Sorensen, E.M., 1991, Cadmium. In: Metal Poisoning in Fish. CRC Press, Boca Raton, pp.175-234.
  27. Sun, F. and Zhou, Q., 2007, "Metal accumulation in the polychaete Hediste japonica with emphasis on interaction between heavy metals and petroleum hydrocarbon", Environ. Pollut., Vol.149, 92-98. https://doi.org/10.1016/j.envpol.2006.12.013
  28. Sun, F., Zhou, Q., Wang. M. and An, J., 2009, "Joint stress of copper and petroleum hydrocarbons on the polychaete Perinereis aubuhitensis at biochemical levels", Ecotoxicol. Environ. Saf., Vol.72, 1887-1892. https://doi.org/10.1016/j.ecoenv.2009.04.017
  29. Suzuki, K.T., Rui, M., Ueda, J.I. and Ozawa, T., 1996, "Production of hydroxyl radicals by copper-containing metallothionein: roles as prooxidant", Toxicol. Appl. Pharmacol., Vol.141, 231-237. https://doi.org/10.1016/S0041-008X(96)80028-7
  30. Vazquez, F.G. and Sharma, V.K., 2004, "Major and trace elements in sediments of the Campeche Sound, southeast Gulf of Mexico", Mar. Pollut. Bull., Vol.48, 87-90. https://doi.org/10.1016/S0025-326X(03)00328-X
  31. Viarengo, A., Ponzano, E., Dondero, F. and Fabbra, R., 1997, "A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic mollusk", Mar. Environ. Res., Vol.44, 69-84. https://doi.org/10.1016/S0141-1136(96)00103-1
  32. Won, E.J., Raisuddin, S. and Shin, K.H., 2008, "Evaluation of induction of metallothionein-like proteins (MTLPs) in the polychaetes for biomonitoring of heavy metal pollution in marine sediments", Mar. Pollut. Bull., Vol.57, 544-551. https://doi.org/10.1016/j.marpolbul.2008.02.025
  33. Zhou, Q.X., Rainbow, P.S. and Smith, B.D., 2003, "Tolerance and accumulation of the trace metals zinc, copper and cadmium in three populations of the polychaete Nereis diversicolor", J. Mar. Biolog. Assoc. U.K., Vol.83, 65-72. https://doi.org/10.1017/S0025315403006817h
  34. Zorita, I., Apraiz, I., Ortiz-Zarragoitia, M., Orbea, A., Cancio, I., Soto, M., Marigómez, I. and Cajaraville, M.P., 2007, "Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms", Environ. Pollut., Vol.148, 236-250. https://doi.org/10.1016/j.envpol.2006.10.022