DOI QR코드

DOI QR Code

In Situ X-ray Absorption Spectroscopic Study for α-MoO3 Electrode upon Discharge/Charge Reaction in Lithium Secondary Batteries

  • Kang, Joo-Hee (Center for Intelligent Nano-Bio Materials (CIMBN), Department of Chemistry and Nanoscience, and Department of Bioinspired Science, Ewha Womans University) ;
  • Paek, Seung-Min (Department of Chemistry, Kyungpook National University) ;
  • Choy, Jin-Ho (Center for Intelligent Nano-Bio Materials (CIMBN), Department of Chemistry and Nanoscience, and Department of Bioinspired Science, Ewha Womans University)
  • Received : 2010.08.21
  • Accepted : 2010.10.09
  • Published : 2010.12.20

Abstract

In-situ X-ray absorption spectroscopy (XAS) was used to elucidate the structural variation of $\alpha-MoO_3$ electrode upon discharge/charge reaction in a lithium ion battery. According to the XAS analysis, hexavalent Mo atoms in $\alpha-MoO_3$ framework are reduced as the amount of intercalated lithium ions increases. As lithium de-intercalation proceeds, most of pre-edge peaks are restored again. However, according to the Fourier transforms of the extended X-ray absorption fine structure (EXAFS) spectra, lithium de-intercalation reaction is partially irreversible upon the charge reaction, which is one of the main reasons why the capacity of $\alpha-MoO_3$ electrode decreases upon successive discharge/charge cycles.

Keywords

References

  1. Deb, S. K. Sol. Energy Mater. Sol. Cells 1995, 39, 191. https://doi.org/10.1016/0927-0248(95)00055-0
  2. Burcham, L. J.; Briand, L. E.; Wachs, I. E. Langmuir 2001, 17, 6164. https://doi.org/10.1021/la010009u
  3. Ferroni, M.; Guidi, V.; Martinelli, G.; Nelli, P.; Sacerdoti, M.; Sberveglieri, G. Thin Solid Films 1997, 307, 148. https://doi.org/10.1016/S0040-6090(97)00279-4
  4. Wang, J. F.; Rose, K. C.; Lieber, C. M. J. Phys. Chem. B 1999, 103, 8405. https://doi.org/10.1021/jp9920794
  5. Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19, 2526. https://doi.org/10.1039/b819629j
  6. Mai, L.; Hu, B.; Chen, W.; Qi, Y.; Lao, C.; Yang, R.; Dai, Y.; Wang, Z. L. Adv. Mater. 2007, 19, 3712. https://doi.org/10.1002/adma.200700883
  7. Kim, M. G.; Cho, J. Adv. Funct. Mater. 2009, 19, 1497. https://doi.org/10.1002/adfm.200801095
  8. Bullard, J. W.; Smith, R. L. Solid State Ionics 2003, 160, 335.
  9. Paek, S. M.; Jung, H.; Park, M.; Lee, J. K.; Choy, J. H. Chem. Mater. 2005, 17, 3492. https://doi.org/10.1021/cm0477220
  10. Paek, S. M.; Jung, H.; Lee, Y. J.; Park, M.; Hwang, S. J.; Choy, J. H. Chem. Mater. 2006, 18, 1134. https://doi.org/10.1021/cm052201d
  11. Tsumura, T.; Inagaki, M. J. Mater. Sci. Technol. 2000, 16, 5.
  12. Li, W.; Meitzner, G. D.; Borry, R. W.; Iglesia, E. J. Catal. 2000, 191, 373. https://doi.org/10.1006/jcat.1999.2795
  13. Xie, S.; Chen, K.; Bell, A. T.; Iglesia, E. J. Phys. Chem. B 2000, 104, 10059. https://doi.org/10.1021/jp002419h
  14. Ressler, T.; Wienold, J.; Jentoft, R. E.; Neisius, T. J. Catal. 2002, 210, 67. https://doi.org/10.1006/jcat.2002.3659
  15. Timpe, O.; Neisius, T.; Find, J.; Mestl, G.; Dieterle, M.; Schlogl, R. J. Catal. 2000, 191, 75. https://doi.org/10.1006/jcat.1999.2772
  16. Ressler, T.; Jentoft, R. E.; Wienold, J.; Günter, M. M.; Timpe, O. J. Phys. Chem. B 2000, 104, 6360.
  17. Hibble, S. J.; Fawcett, I. D. Inorg. Chem. 1995, 34, 500. https://doi.org/10.1021/ic00106a011

Cited by

  1. Nanobelts as Novel Cathode Material of Rechargeable Li-Ion Batteries vol.3, pp.5, 2012, https://doi.org/10.1002/aenm.201200692
  2. Foams vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1388
  3. Exfoliation of Dion-Jacobson Layered Perovskite into Macromolecular Nanoplatelet vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.2041
  4. Creation of Oxygen Vacancies in MoO3/SiO2 by Thermal Decomposition of Pre-Impregnated Citric Acid Under N2 and Their Positive Role in Oxidative Desulfurization of Dibenzothiophene vol.144, pp.3, 2014, https://doi.org/10.1007/s10562-013-1141-0
  5. in Constructing Li-Rich High Energy Density Cathode Materials vol.26, pp.10, 2014, https://doi.org/10.1021/cm501025r
  6. An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide vol.6, pp.17, 2014, https://doi.org/10.1039/C4NR02480J
  7. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x vol.16, pp.4, 2016, https://doi.org/10.1038/nmat4810
  8. High Capacity and Reversibility of Oxygen‐Vacancy‐Controlled MoO 3 on Cu in Li‐Ion Batteries: Unveiling Storage Mechanism in Binder‐Free MoO vol.8, pp.6, 2010, https://doi.org/10.1002/ente.201901502
  9. Impact of Local Separation on the Structural and Electrochemical Behaviors in Li 2 MoO 3 LiCrO 2 Disordered Rock‐Salt Cathode Material vol.11, pp.3, 2021, https://doi.org/10.1002/aenm.202002958