DOI QR코드

DOI QR Code

Phosphoric Acid Modified Nb2O5: A Selective and Reusable Catalyst for Dehydration of Sorbitol to Isosorbide

  • Tang, Zhen-Chen (College of chemistry and chemical engineering, Nanjing University of Technology) ;
  • Yu, Ding-Hua (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Sun, Peng (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Li, Heng (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Huang, He (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
  • Received : 2010.09.01
  • Accepted : 2010.10.11
  • Published : 2010.12.20

Abstract

Niobium oxide ($Nb_2O_5$) and phosphated $Nb_2O_5$ were synthesized and used as catalysts for sorbitol dehydration to isosorbide. The characterization results of $N_2$ adsorption, XRD and $NH_3$-TPD revealed that the phosphoric acid modification could well prevent the crystallization of $Nb_2O_5$. And the amorphous phosphated $Nb_2O_5$ catalysts kept the relatively large surface area and stable acidity at high calcination temperature. The catalytic results showed that the selectivity to isosorbide could be dramatically enhanced over phosphated $Nb_2O_5$. The excellent catalytic performance with 100.0% sorbitol conversion and 62.5% isosorbide selectivity were obtained over the 0.8P/NBO-400 catalyst. Comparing with $Nb_2O_5$ catalysts, phosphated $Nb_2O_5$ catalysts regenerated through a simple calcination process showed no significant activity loss after recycling three runs.

Keywords

References

  1. Gohil, R. M. Polym. Eng. Sci. 2009, 49, 544. https://doi.org/10.1002/pen.20840
  2. Kricheldorf, H. R.; Behnken G.; Sell, M. J. Macromol. Sci., Pure Appl. Chem. 2007, 44, 679. https://doi.org/10.1080/10601320701351128
  3. Chatti, S.; Kricheldorf, H. R. J. Macromol. Sci., Pure Appl. Chem. 2006, 43, 967. https://doi.org/10.1080/10601320600740397
  4. Chatti, S.; Bortolussi, M.; Loupy, A.; Blais, J. C.; Bogdal, D.; Majdoub, M. Eur. Polym. J. 2002, 38, 1851. https://doi.org/10.1016/S0014-3057(02)00071-X
  5. Kricheldorf, H. R. Polym. Rev. 1997, 37, 599. https://doi.org/10.1080/15321799708009650
  6. Bhatia, K. K. US Patent #6407266, 2002.
  7. Hartmann, L. A. US Patent #3484459, 1969.
  8. Malone, M. F.; Doherty, F. Ind. Eng. Chem. Res. 2000, 39, 3953. https://doi.org/10.1021/ie000633m
  9. Iizuka, T.; Ogasawara, K.; Tanabe, K. Bull. Chem. Soc. Jpn. 1983, 56, 2927. https://doi.org/10.1246/bcsj.56.2927
  10. Carlini, C.; Giuttari, M.; Galletti, A. M. R.; Sbrana, G.; Armaroli, T.; Busca, G. Appl. Catal. A 1999, 183, 295. https://doi.org/10.1016/S0926-860X(99)00064-2
  11. Armaroli, T.; Busca, G.; Carlini, C.; Giuttari, M.; Galletti, A. M. R.; Sbrana, G. J. Mol. Catal. A: Chem. 2000, 151, 233. https://doi.org/10.1016/S1381-1169(99)00248-4
  12. Okazaki, S.; Wada, N. Catal. Today 1993, 16, 349. https://doi.org/10.1016/0920-5861(93)80074-B
  13. Okumura, K.; Yamashita, K.; Hirano, M.; Niwa, M. J. Catal. 2005, 234, 300. https://doi.org/10.1016/j.jcat.2005.06.033
  14. Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. J. Catal. 2007, 250, 342. https://doi.org/10.1016/j.jcat.2007.06.016
  15. Okazaki, S.; Kurimata, M.; Iizuka, T.; Tanabe, K. Bull. Chem. Soc. Jpn. 1987, 60, 37. https://doi.org/10.1246/bcsj.60.37
  16. Kurosaki, A.; Okuyama, T.; Okazaki, S. Bull. Chem. Soc. Jpn. 1987, 60, 3541. https://doi.org/10.1246/bcsj.60.3541
  17. Nowak, I.; Ziolek, M. Chem. Rev. 1999, 99, 3603. https://doi.org/10.1021/cr9800208
  18. Montassier, C.; Menezo, J. C.; Naja, J.; Granger, P.; Barbier, J.; Sarrazin, P.; Didillon, B. J. Mol. Catal. A: Chem. 1994, 91, 119. https://doi.org/10.1016/0304-5102(94)00022-0
  19. Kurszewska, M.; Skorupowa, E.; Madaj, J.; Konitz, A.; Wojnowski, W.; Wiśniewski, A. Carbohydr. Res. 2002, 337, 1261. https://doi.org/10.1016/S0008-6215(02)00129-5
  20. West, R. M.; Tucker, M. H.; Braden, D. J.; Dumesic, J. A. Catal. Commun. 2009, 10, 1743. https://doi.org/10.1016/j.catcom.2009.05.021
  21. Jehng, J. M.; Wachs, I. E. Catal. Today 1990, 8, 37. https://doi.org/10.1016/0920-5861(90)87006-O
  22. Burke, P. A.; Ko, E. I. J. Catal. 1991, 129, 38. https://doi.org/10.1016/0021-9517(91)90007-Q
  23. Montassier, C.; Menezo, J. C.; Moukolo, J.; Naja, J.; Hoang, L. C.; Barbier, J.; Boitiaux, J. P. J. Mol. Catal. A: Chem. 1991, 70, 65. https://doi.org/10.1016/0304-5102(91)85006-N

Cited by

  1. Liquid-phase dehydration of sorbitol under microwave irradiation in the presence of acidic resin catalysts vol.37, pp.9, 2011, https://doi.org/10.1007/s11164-011-0389-5
  2. Selective Dehydration of Sorbitol to Isosorbide over Sulfonated Activated Carbon Catalyst vol.51, pp.2, 2013, https://doi.org/10.9713/kcer.2013.51.2.189
  3. Conversion of (Ligno)Cellulose Feeds to Isosorbide with Heteropoly Acids and Ru on Carbon vol.6, pp.1, 2013, https://doi.org/10.1002/cssc.201200610
  4. Conversion of Cellulose into Isosorbide over Bifunctional Ruthenium Nanoparticles Supported on Niobium Phosphate vol.6, pp.11, 2013, https://doi.org/10.1002/cssc.201300701
  5. Intercalation-Controlled Cyclodehydration of Sorbitol in Water over Layered-Niobium-Molybdate Solid Acid vol.7, pp.3, 2014, https://doi.org/10.1002/cssc.201300946
  6. Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects vol.19, pp.21, 2017, https://doi.org/10.1039/C7GC02040F
  7. Synthesis of isosorbide: an overview of challenging reactions vol.19, pp.22, 2017, https://doi.org/10.1039/C7GC01912B
  8. Silica-supported orthophosphoric acid (OPA/SiO2): preparation, characterization, and evaluation as green reusable catalyst for pinacolic rearrangement pp.1735-2428, 2019, https://doi.org/10.1007/s13738-018-01582-2
  9. Synthesis of phosphoric acid supported on magnetic core-shell nanoparticles: a novel recyclable heterogeneous catalyst for Kabachnik-Fields reaction in water vol.4, pp.30, 2014, https://doi.org/10.1039/c4ra01124d
  10. Solvent‐Free Production of Isosorbide from Sorbitol Catalyzed by a Polymeric Solid Acid vol.12, pp.22, 2010, https://doi.org/10.1002/cssc.201901922
  11. Sorbitol Cyclodehydration to Isosorbide Catalyzed by Acidic Carbon Obtained from Reaction By‐Product vol.5, pp.5, 2020, https://doi.org/10.1002/slct.201904251
  12. Functionalized CeO2/SBA-15 Materials as Efficient Catalysts for Aqueous Room Temperature Mono-dehydration of Sugar Alcohols vol.8, pp.16, 2010, https://doi.org/10.1021/acssuschemeng.0c00494
  13. Efficient and selective aqueous photocatalytic mono-dehydration of sugar alcohols using functionalized yttrium oxide nanocatalysts vol.22, pp.16, 2010, https://doi.org/10.1039/d0gc00914h
  14. Developing a Continuous Process for Isosorbide Production from Renewable Sources vol.12, pp.24, 2010, https://doi.org/10.1002/cctc.202001278
  15. Sequential dehydration of sorbitol to isosorbide over acidified niobium oxides vol.11, pp.12, 2021, https://doi.org/10.1039/d1cy00326g