DOI QR코드

DOI QR Code

A Chromo- and Fluoroionophoric Thiaoxaaza-Macrocycle Functionalized with Nitrobenzofurazan Exhibiting Mercury(II) Selectivity

  • Lee, Ji-Eun (Central Instrument Facility, Gyeongsang National University) ;
  • Lee, Shim-Sung (Department of Chemistry (WCU) and RINS, Gyeongsang National University) ;
  • Choi, Kyu-Seong (Department of Science Education, Kyungnam University)
  • Received : 2010.09.17
  • Accepted : 2010.10.18
  • Published : 2010.12.20

Abstract

A chromo/fluorogenic $NO_2S_2$-macrocycle L functionalized with nitrobenzofurazan unit as a dual-signaling probe was synthesized and structurally characterized by single crystal X-ray analysis. In a cation-induced color change experiment, L exhibited excellent $Hg^{2+}$ ion selectivity by showing the color change from orange-red to yellow. However, this hypochromic shift by $Hg^{2+}$ was observed for the weaker coordinating anion system such as ${NO_3}^-$ and ${ClO_4}^-$ ions. The observed anion effect is due to the strong coordination of anions inhibits the bond formation between $Hg^{2+}$ and the macrocyclic tert-N atom, which is sensitive to induce the color change. In the fluorometric experiment, L showed chelate-enhanced fluorescence change effect only with $Hg^{2+}$ ion, together with a change from yellow to green emission. The sensing ability for $Hg^{2+}$ with the proposed chemosensor L is due to the stable complexation with 1:1 stoichiometry (metal-to-ligand).

Keywords

References

  1. Grandjean, P.; Weihe, P.; White, R. F.; Debes, F. Environ. Res. 1998, 77, 165. https://doi.org/10.1006/enrs.1997.3804
  2. Takeuchi, T.; Morikawa, N.; Matsumoto, H.; Shiraishi, Y. Acta Neuropathol. 1962, 2, 40. https://doi.org/10.1007/BF00685743
  3. Harada, M. Crit. Rev. Toxicol. 1995, 25, 1. https://doi.org/10.3109/10408449509089885
  4. Lee, S. J.; Lee, J.-E.; Seo, J.; Jeong, I. Y.; Lee, S. S.; Jung, J. H. Adv. Funct. Mater. 2007, 17, 3441.
  5. Kim, S. H.; Sang, J. S.; Park, S. M.; Chang, S.-K. Org. Lett. 2006, 8, 371. https://doi.org/10.1021/ol052282j
  6. Sakamoto, H.; Ishikawa, J.; Nakao, S.; Wada, H. Chem. Commun. 2000, 2395.
  7. Moon, S. Y.; Cha, M. R.; Kim, Y. H.; Chang, S.-K. J. Org. Chem. 2004, 69, 181. https://doi.org/10.1021/jo034713m
  8. Yang, Y. K.; Yook, K. J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760. https://doi.org/10.1021/ja054855t
  9. Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc. 2000, 122, 6769. https://doi.org/10.1021/ja0006292
  10. Shihadeh, Y. A.; Benito, A.; Lloris, J. M.; Martínez-Manez, R.; Pardo, T.; Soto, J.; Marcos, M. D. J. Chem. Soc., Dalton Trans. 2000, 1199.
  11. Ji, H.; Yoo, J. K.; Lee, H. S.; Park, K.-M.; Kang, Y. J. Bull. Korean Chem. Soc. 2010, 31, 1371. https://doi.org/10.5012/bkcs.2010.31.5.1371
  12. Lee, H. G.; Lee, J.-E.; Choi, K. S. Inorg. Chem. Commun. 2006, 9, 582. https://doi.org/10.1016/j.inoche.2006.03.005
  13. Yuan, M.; Li, Y.; Li, C.; Liu, X.; Lv, J.; Xu, J.; Liu, H.; Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313. https://doi.org/10.1021/ol0706399
  14. Martínez, R.; Espinosa, A.; Tárraga, A.; Molina, P. Org. Lett. 2005, 7, 5869. https://doi.org/10.1021/ol052508i
  15. Jimenez, D.; Martínez-Manez, R.; Sancenón, F.; Ros-Lis, J. V.; Soto, J.; Benito, Á.; García-Breijo, E. Eur. J. Inorg. Chem. 2005, 2393.
  16. Boiocchi, M.; Fabbrizzi, L.; Licchelli, M.; Dacchi, D.; Vázquez, M.; Zampa, C. Chem. Commun. 2003, 1812.
  17. Fabbrizzi, L.; Liccheli, M.; Poggi, A.; Sacchi, D.; Zampa, C. Polyhedron 2004, 23, 373. https://doi.org/10.1016/j.poly.2003.11.024
  18. Bag, B.; Bharadwaj, P. Inorg. Chem. 2004, 43, 4626. https://doi.org/10.1021/ic049725k
  19. Callan, J. F.; Prasanna de Silva, A.; Ferguson, J.; Huxley, A. J. M.; O’Brien, A. M. Tetrahedron 2004, 60, 11125. https://doi.org/10.1016/j.tet.2004.08.057
  20. Bruker, SMART and SAINT: Area Detector Control and Integration Software Ver. 5.0; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998.
  21. Bruker, SHELXTL: Structure Determination Programs Ver. 5.16; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998.
  22. Jin, Y.; Yoon, I.; Seo, J.; Lee, J.-E.; Moon, S. T.; Kim, J.; Han, S. W.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Dalton Trans. 2005, 788.
  23. Lee, S. J.; Jung, J. H.; Seo, J.; Yoon, I.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Org. Lett. 2006, 8, 1641. https://doi.org/10.1021/ol0602405

Cited by

  1. ChemInform Abstract: A Chromo- and Fluoroionophoric Thiaoxaaza-Macrocyles (I) Functionalized with Nitrobenzofurazan Exhibiting Mercury(II) Selectivity. vol.42, pp.16, 2011, https://doi.org/10.1002/chin.201116181
  2. Synthesis and Crystal Structures of Mercury(II) and Copper(II) Complexes of Azathia-Macrocycle with Pyridylmethyl Arm vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.301
  3. A new turn-on fluorescent sensor based on NBD for highly selective detection of Hg2+ in aqueous media and imaging in live cells vol.6, pp.13, 2014, https://doi.org/10.1039/c4ay00729h
  4. Cation-Selective and Anion-Controlled Fluorogenic Behaviors of a Benzothiazole-Attached Macrocycle That Correlate with Structural Coordination Modes vol.55, pp.15, 2016, https://doi.org/10.1021/acs.inorgchem.6b00690
  5. A new 4-Amino-7-Nitro-2,1,3-Benzoxadiazole (ANBD)-Based Fluorescent Probe for the Detection of Hg2+ vol.27, pp.5, 2017, https://doi.org/10.1007/s10895-017-2112-4
  6. A Fluorescent Chemosensor Based on 7-Nitrobenz-2-oxa-1,3-diazole (NBD) for the Selective Detection of Hg(II) vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2809
  7. Mechanistic insights into heavy metal ion sensing by NOS2-macrocyclic fluorosensors via the structure-function relationship: influences of fluorophores, solvents and anions vol.145, pp.5, 2010, https://doi.org/10.1039/c9an02466b