DOI QR코드

DOI QR Code

Comparison and Examination of the Calculating Hydrological Geographic Parameters Using GIS

GIS를 이용한 수문학적 지형인자 산정에 대한 비교검토

  • Kim, Kyung-Tak (Water Resources Research Div., Korea Institute of Construction Technology) ;
  • Choi, Yun-Seok (Water Resources Research Div., Korea Institute of Construction Technology) ;
  • Lee, Hyo-Jung (Water Resources Research Div., Korea Institute of Construction Technology)
  • 김경탁 (한국건설기술연구원 수자원연구실) ;
  • 최윤석 (한국건설기술연구원 수자원연구실) ;
  • 이효정 (한국건설기술연구원 수자원연구실)
  • Published : 2010.01.31

Abstract

Recently, GIS softwares such as WMS, ArcHydro, and HyGIS which can calculate hydrological geographic parameters are popularized. These softwares have the functions to calculate various geographic parameters which are used in water resources from DEM (Digital Elevation Model). In this study, hydrological geographic parameters calculated by WMS and ArcHydro are compared and examined with them from HyGIS to evaluate the applicability of the parameters from HyGIS. Bochungcheon (Riv.), Wicheon (Riv.), Pyungchanggang (Riv.), Gyungancheon (Riv.), Naerincheon (Riv.), and Imjingang (Riv.) watersheds are selected for this study, and the shape of watershed, watershed area, watershed slope, the average slope of watershed, main stream length, main stream slope, maximum flow distance, and the slope of maximum flow distance are calculated to compare and examine the characteristics. Study results show that the average relative error of 7 geographic parameters from all the watersheds is 4.77 %, and all the watershed boundaries are very similar. So, all the geographic parameters calculated by each software show very similar value, and the geographic parameters calculated by HyGIS can be applied to water resources with WMS and ArcHydro which have been generally used.

최근 들어 WMS와 ArcHydro 및 HyGIS와 같이 수문학적 지형인자를 생성할 수 있는 GIS 프로그램이 널리 보급되고 있다. 이러한 프로그램에서는 격자형 고도자료인 DEM (Digital Elevation Model)을 이용하여 수자원에서 필요로 하는 다양한 지형인자를 계산할 수 있는 기능을 제공하고 있다. 본 연구에서는 HyGIS로부터 산정된 수문학적 지형인자의 적용성을 평가하기 위해서 국내에서 주로 사용되고 있는 WMS와 ArcHydro를 이용하여 수문학적 지형인자를 산정하고 그 결과를 HyGIS의 계산 결과와 비교 검토하였다. 연구 대상유역으로는 보청천, 위천, 평창강, 경안천, 내린천, 임진강 유역을 선정하였으며, 각 유역에 대해서 추출된 유역의 형태와 함께 유역 면적, 유역 경사, 유역평균고도, 최대유하거리, 최대유하거리 경사, 주하천 길이, 주하천 경사에 대한 산정결과를 비교검토 하였다. 연구결과 전체 유역에 대한 7개의 지형인자의 평균 상대오차는 4.77 %를 나타내었으며, 각 유역에 대해서 추출된 유역 경계 또한 매우 유사하게 생성되었다. 이와 같이 각각의 프로그램은 매우 유사한 지형인자 계산 결과를 나타내고 있으며, 따라서 HyGIS에서 계산된 지형인자는 기존에 국내에서 활용되어 왔던 WMS 및 ArcHydro와 함께 수자원 분야에서 충분히 적용 가능한 것으로 나타났다.

Keywords

References

  1. 건설부 (1983). 1983년 국제수문개발계획(IHP) 연구보고서
  2. 김경탁 (1998). GIS 적용에 따른 홍수유출응답에 관한 연구. 인하대학교 토목공학과. 박사학위논문
  3. 국토해양부 (2007). 한국수문조사연보
  4. 김경탁, 최윤석 (2005). “DEM에서의 sink와 flat area 처리 알고리즘에 대한 비교 검토.” 한국지리정보학회지, 한국지리정보학회, 제8권, 제4호, pp. 91-101.
  5. 김경탁, 최윤석 (2006). “HyGIS와 SWAT의 연계 시스템 개발.” 한국지리정보학회지, 한국지리정보학회, 제9권, 제3호, pp. 136-145.
  6. 김경탁, 최윤석, 변인경 (2006). “GIS를 이용한 유역유출해석.” 제17회 수공학 웍샵 교재, 한국수자원학회, pp. 1-72.
  7. 김경탁, 최윤석, 박동선 (2004). “HyGIS를 이용한 유역특성인자 추출에 대한 검토.” 2004년 한국수자원학회학술발표회 초록집, 한국수자원학회, pp. 1267-1270.
  8. 김경탁, 최윤석, 장재혁 (2004). “HyGIS와 TOPMODEL의 연계에 관한 연구.” 한국지리정보학회지, 한국지리정보학회, 제7권, 제4호, pp. 155-165.
  9. 오경두, 이주헌, 강정훈, 최종진 (2002). “수문모형시스템.” 제10회 수공학 웍샵 교재, 한국수자원학회, pp. II.1-II.106.
  10. 이재남, 노재경 (2009). “HyGIS-TOPMODEL의 천천유역 적용.” 2009년 한국수자원학회 학술발표회 초록집, 한국수자원학회, pp. 1033-1037.
  11. 이종태, 허성철, 김정회, 한건연 (2006). “제방붕괴조건에 따른 도시하천의 홍수범람 특성 및 홍수지도 작성 - 중랑천 시험유역을 중심으로 -.” 한국수자원학회 논문집, 한국수자원학회, 제39권, 제5호, pp. 383-394. https://doi.org/10.3741/JKWRA.2006.39.5.383
  12. 최윤석, 김경탁, 심명필 (2000). “GIS를 응용한 홍수유출해석에 관한 연구.” 한국수자원학회논문집, 한국수자원학회, 제20권, 제3-B호, pp. 361-367.
  13. 한건연, 안기홍, 김경록, 박홍성 (2006). “HyGIS와 연계한 수리/수문통합 모형의 개발.” 2006년 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 840-845.
  14. 한국건설기술연구원 (2007). HyGIS 개발. 과학기술부, pp. 29-38.
  15. 한국건설기술연구원 (2008). 위성자료 공공활용연구 - 위성영상을 이용한 하천정보 생산 및 활용에 관한 연구 -. 기초기술연구회, pp. 187-190.
  16. ESRI. Arc/Info v8.1 Online Help.
  17. Garbrecht, J. and Martz, L.W. (1997). “The assignment of drainage direction over flat surfaces in raster digital elevation models.” Journal of Hydrology, vol. 193, pp. 204-213. https://doi.org/10.1016/S0022-1694(96)03138-1
  18. Garbrecht, J. and Martz, L.W. (2000). TOPAZ User Manual, U.S. Department of Agriculture, Agricultural Research Service.
  19. Jenson, S.K. and Domingue, J.O. (1988). “Extracting topographic structure from digital elevation data for geographic information system analysis.” Photogrammetric Engineering and Remote Sensing, vol. 54, No. 11, pp. 1593-1600.
  20. Maidment D. R. (2002). Arc Hydro: GIS for Water Resources, ESRI press, CA, USA.
  21. Martz, L.W. and Garbrecht, J. (1998). “The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models.” Hydrological processes, Vol. 12, No. 6, pp. 843-855. https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<843::AID-HYP658>3.0.CO;2-R
  22. Martz, L.W. and Jong, E.d. (1988). “CATCH: A FORTRAN program for measuring catchment area from digital elevation models.” Computers& Geoscineces, Vol. 14, No. 5, pp. 627-640. https://doi.org/10.1016/0098-3004(88)90018-0
  23. O'Callaghan J.F. and D.M. Mark. (1984). “The extraction of drainage networks from digital elevation data.” Computer vision, graphics, and image processing, Vol. 28, pp. 324-344. https://doi.org/10.1016/S0734-189X(84)80011-0
  24. Tribe, A. (1992). “Automated Recognition of Valley lines and Drainage Networks from Grid Digital Elevation Models: a review and a new method.” Journal of Hydrology, Vol. 139, pp. 263-293. https://doi.org/10.1016/0022-1694(94)02619-M
  25. Global Land Cover Facility, http://glcf.umiacs.umd.edu/index.shtml