DOI QR코드

DOI QR Code

Characteristics of CaCO3 Sorbent Particles for the In-furnace Desulfurization

로 내 탈황을 위한 CaCO3 흡착제 입자의 분위기 기체와 체류 시간의 변화에 따른 특성

  • Lee, Kang-Soo (Aerosol & Particle Technology Laboratory, Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jung, Jae-Hee (Global Environment Center, Korea Institute of Science and Technology (KIST)) ;
  • Keel, Sang-In (Environmental Systems Research Division, Korea Institute of Machinery and Materials (KIMM)) ;
  • Lee, Hyung-Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER)) ;
  • Kim, Sang-Soo (Aerosol & Particle Technology Laboratory, Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 이강수 (한국과학기술원 기계공학과) ;
  • 정재희 (한국과학기술연구원 환경기술연구단) ;
  • 길상인 (한국기계연구원 플라즈마자원연구실) ;
  • 이형근 (한국에너지기술연구원 온실가스연구단) ;
  • 김상수 (한국과학기술원 기계공학과)
  • Published : 2010.02.01

Abstract

The in-furnace desulfurization technique is applied to the $O_2/CO_2$ combustion system for the carbon capture and storage (CCS) process because this combustion system does not need an additional chamber for the desulfurization. $CaCO_3$ sorbent particles, which have a wide range in size from a few nanometers to several tens of micrometers, are used for this process. In this study, an experimental system which can simulate the $O_2/CO_2$ combustion system was developed. $CaCO_3$ sorbent particles were exposed to the high temperature reactor at $1200^{\circ}C$ with various residence times (0.33-1.46 s) in air and $CO_2$ atmospheric conditions, respectively. The sorbent particles were then sampled at the inlet and outlet of the reactor and analyzed qualitatively/quantitatively using SMPS, XRD, TGA, and SEM. The results showed that the residence time and atmospheric condition in a high temperature reactor can affect the characteristics of the $CaCO_3$ sorbent particles used in the in-furnace desulfurization technique, such as the calcination rate and reaction mechanism.

추가적인 챔버를 필요로 하지 않는 로 내 탈황 기술은 순산소 연소 기술에 적용 가능할 것으로 기대되어 많은 연구가 진행중이다. 이때, 수 나노부터 수십 마이크로미터의 넓은 사이즈 분포를 가지는 $CaCO_3$ 입자가 흡착제로써 사용된다. 본 연구에서는 순산소 연소 시스템을 모사하는 랩스케일의 실험 장치를 구축하였다. $CaCO_3$ 흡착제 입자는 $1200^{\circ}C$로 설정된 고온 반응로에 각각 공기 분위기와 CO2 분위기에서 노출되게 된다. 이때 고온 반응로에서의 체류 시간을 0.33 ~ 1.46 초로 변화시켜 가면서 분석을 수행하였다. 흡착제 입자는 고온 반응로의 전단과 후단에서 각각 포집되어 주사형 이동도 입자계수기, X-선 회절장치, 열중량 분석기, 주사전자현미경 등을 사용하여 정성적/정량적으로 분석하였다. 결과적으로, 고온 반응로에서의 체류 시간과 분위기 기체성분이 흡착제 입자의 하소 반응률, 반응 메커니즘 등에 영향을 미침을 확인하였다.

Keywords

References

  1. Figueroa, J. D., Fout, T., Plasynski, S., Mcllvried, H. and Srivastava, R. D., 2008, "Advances in $CO_2$ Capture Technology - The U.S. Department of Energy's Carbon Sequestration Program," Int. J. Greenh. Gas Con., Vol. 2, No. 1, pp. 9-20. https://doi.org/10.1016/S1750-5836(07)00094-1
  2. Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P. and Wall, T. F., 2005, "Oxy-Fuel Combustion Technology for Coal-fired Power Generation," Prog. Energ. Combust., Vol. 31, No. 4, pp. 283-307. https://doi.org/10.1016/j.pecs.2005.07.001
  3. Liu, H. and Okazaki, K., 2003, "Simultaneous Easy $CO_2$ Recovery and Drastic Reduction of $SO_X$ and $NO_X$ in $O_2/CO_2$ Coal Combustion with Heat Recirculation," Fuel, Vol. 82, No. 11, pp. 1427-1436. https://doi.org/10.1016/S0016-2361(03)00067-X
  4. Okazaki, K. and Ando, T., 1997, "$NO_X$ Reduction Mechanism in Coal Combustion with Recycled $CO_2$," Energy, Vol. 22, No. 2/3, pp. 207-215. https://doi.org/10.1016/S0360-5442(96)00133-8
  5. Liu, H., Katagiri, S., Kaneko, U. and Okazaki, K., 2000, "Sulfation Behavior of Limestone under High $CO_2$ Concentration in $O_2/CO_2$Combustion," Fuel, Vol. 79, No. 8, pp. 945-953. https://doi.org/10.1016/S0016-2361(99)00212-4
  6. Chen, C. M. and Zhao, C. S., 2006, "Mechanism of Highly Efficient In-Furnace Desulfurization by Limestone under $O_2/CO_2$ Coal Combustion Atmosphere," Ind. Eng. Chem. Res., Vol. 45, No. 14, pp. 5078-5085. https://doi.org/10.1021/ie060196x
  7. Hu, G., Dam-Johanson, K., Wedel, S. and Hansen, J. P., 2007, "Direct Sulfation of Limestone," AIChe J., Vol. 53, No. 4, pp. 948-960. https://doi.org/10.1002/aic.11129
  8. Fuertes, A. B., Velasco, G., Fernandez, M. J. and Alvarez, T., 1994, "Analysis of the Direct Sulfation of Calcium Carbonate," Thermochim. Acta, Vol. 242, pp. 161-172. https://doi.org/10.1016/0040-6031(94)85018-6
  9. Tullin, C. and Ljungstrom, E., 1989, "Reaction between Calcium Carbonate and Sulfur Dioxide," Energ. Fuel., Vol. 3, No. 3, pp. 284-287. https://doi.org/10.1021/ef00015a003
  10. Mahuli, S. K., Agnihotri, R., Jadhav, R., Chauk, S. and Fan, L. S., 1999, "Combined Calcination, Sintering, and Sulfation Model for $CaCO_3-SO_2$ Reaction," AIChE J., Vol. 45, No. 2, pp. 367-382. https://doi.org/10.1002/aic.690450216
  11. Rahmani, M. and Sohrabi, M., 2006, "Direct Sulfation of Calcium Carbonate Using the Variable Diffusivity Approach," Chem. Eng. Technol., Vol. 29, No. 12, pp. 1496-1501. https://doi.org/10.1002/ceat.200600144
  12. Chen, C., Zhao, C., Liang, C. and Pang, K., 2007, "Calcination and Sintering Characteristics of Limestone under $O_2/CO_2$ Combustion Atmosphere," Fuel Process. Technol., Vol. 88, No. 2, pp. 171-178. https://doi.org/10.1016/j.fuproc.2006.03.003
  13. Garcia-Labiano, F., Abad, A., De Diego, L. F., Gayan, P. and Adanez, J., 2002, "Calcination of Calcium-based Sorbents at Pressure in a Broad Range of $CO_2$ Concentrations," Chem. Eng. Sci., Vol. 57, No. 13, pp. 2381-2393. https://doi.org/10.1016/S0009-2509(02)00137-9
  14. Szekely, J., Evans, J. W. and Sohn, H. Y., 1976, Gas-Solid Reactions, Academic Press, 1st ed., pp. 12-77.

Cited by

  1. Desulfurization Characteristics of Domestic Limestones through Simultaneous Calcination and Desulfurization Reaction vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1071