DOI QR코드

DOI QR Code

Helianthus tuberosus Extract Has Anti-Diabetes Effects in HIT-T15 Cells

HIT-T15 세포에서 돼지감자 추출물의 항당뇨 효과

  • Kim, Jeong-Lan (Dept. of Food Science and Human Nutrition, Chonbuk National University) ;
  • Bae, Cho-Rong (Dept. of Food Science and Human Nutrition, Chonbuk National University) ;
  • Cha, Youn-Soo (Dept. of Food Science and Human Nutrition, Chonbuk National University)
  • 김정란 (전북대학교 식품영양학과) ;
  • 배초롱 (전북대학교 식품영양학과) ;
  • 차연수 (전북대학교 식품영양학과)
  • Published : 2010.01.30

Abstract

This study was designed to evaluate anti-diabetes effect of Helianthus tuberosus extract (HT) in HIT-T15 cells. There were 5 experimental groups according to treatment NC (0 ${\muL/mL$), HT2 (1.1 ${\muL/mL$), HT3 (1.5 ${\muL/mL$), IN2 (1.8 ${\muL/mL$), IN3 (2.5 ${\muL/mL$). Inulin (IN) was used as a positive control for the Helianthus tuberosus extract groups. Cell viability was significantly increased in the HT3 (1.5 ${\muL/mL$), IN2 (1.8 ${\muL/mL$), IN3 (2.5 ${\muL/mL$) groups, compared with the NC group. There was no significant difference in cytotoxicity among all groups. Cell survival by MTT assay with alloxan was significantly increased in the HT2 (1.1 ${\muL/mL$), HT3 (1.5 ${\muL/mL$) groups, compared with the NC group. Insulin secretion and NAD+/NADH ratio were significantly increased in the HT3 group, compared with the NC group. We found that Helianthus tuberosus extract increased cell viability, had a protective effect on $\beta$-cells, and increased insulin secretion level and $NAD^+$/NADH ratio in HIT-T15 cells. These results suggest that Helianthus tuberosus extract improves the diabetes-related factors.

본 실험에서는 hamster $\beta$-cell인 HIT-T15 cell을 이용하여 돼지감자추출물의 생리활성 및 기능을 검증하고자 하였다. 돼지감자추출물을 첨가한 NC(0 ${\muL/mL$), HT2(1.1 ${\muL/mL$), HT3(1.5 ${\muL/mL$)군과 inulin을 첨가한 NC(0 ${\muL/mL$), IN2(1.8 ${\muL/mL$), IN3(2.5 ${\muL/mL$)군으로 나누어 실험하였다. 세포 viability 측정한 결과 시료를 첨가하지 않은 군을 100%로 보았을 때 돼지감자추출물을 첨가한 HT3(1.5 ${\muL/mL$)군과 inulin을 첨가한 IN2(1.8 ${\muL/mL$), IN3(2.5 ${\muL/mL$) 군에서 세포생존율이 유의적으로 증가하였다(p<0.05). 시료처리 후 췌장 $\beta$-세포 파괴를 유도하지 않고 HIT-T15 cell의 cell culture supernatant를 이용하여 cytotoxicity를 측정한 결과 시료를 첨가하지 않은 NC(0${\muL/mL$)군에 비해 모든 군에서 cytotoxicity가 낮게 나타났다. Alloxan(4 mM)으로 $\beta$-세포 파괴를 유도하여 HIT-T15 cell에서 세포보호 효과를 측정한 결과 시료를 첨가하지 않은 NC(0 ${\muL/mL$)군에 비해 돼지감자추출물을 첨가한 HT2(1.1 ${\muL/mL$), HT3(1.5 ${\muL/mL$)군에서 세포생존율이 유의적으로 증가하였다(p<0.05). 또한 췌장 $\beta$-세포 파괴를 유도하여 HIT-T15 cell이 분비한 인슐린 분비능 및 세포 내 $NAD^+$/NADH 함량을 측정한 결과 시료를 첨가하지 않은 NC(0 ${\muL/mL$)군에 비해 돼지감자추출물을 첨가한 HT3(1.5 ${\muL/mL$)군에서 인슐린 분비량과 $NAD^+$/NADH 함량이 유의적으로 증가하였다(p<0.05). 이상의 연구 결과 돼지감자추출물은 HIT-T15 cell의 생존율을 높이고, 세포보호 효과를 가짐으로써 인슐린 분비능 정상화 및 $NAD^+$ 함량을 증가시켜 혈당 조절 및 당뇨에 긍정적 효과가 있을 것으로 사료된다.

Keywords

References

  1. Park YH. 1994. Understanding of diabetes. J Life Sci 4: 130-131.
  2. Ministry of Health and Welfare. 2005. The Third Korea National Health and Nutrition Examination Survey (KNHANES III), Korea. p 193-195.
  3. Korea National Statistical Office. 2008. Case Report-2007 Death and death statistics.
  4. DeFronzo RA, Bonadonna RC, Ferrannini E. 1992. Pathogenesis of NIDDM: A balanced overview. Diabetes Care 15: 318-353. https://doi.org/10.2337/diacare.15.3.318
  5. The Expert committee on the diagnosis and classification of diabetes mellitus. 2002. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 25: s5-s20. https://doi.org/10.2337/diacare.25.2007.S5
  6. Park YH. 2007. Type 1 diabetes as an autoimmune disease. Medical Postgraduates 35: 141-149.
  7. Kim BJ. 2007. Glucotoxicity. Medical Postgradates 35: 150-157.
  8. Ohtani KI, Shimizu H, Sato N, Mori M. 1998. Troglitazone (CS-045) inhibits $\beta$-cell proliferation rate following stimulation of insulin secretion in HIT-T 15 cells. Endocrinology 139: 172-178. https://doi.org/10.1210/en.139.1.172
  9. Lee IS, Rhee IJ, Kim KT. 1997. Prediabetic in vitro model in pancreatic beta cells induced by streptozotocin. Yakhak Hoeji 41: 260-267.
  10. Go GS, Jeon US. 2003. Ferns, fern-allies and seed-bearing plants of Korea. Iljinsa, Seoul. p 659.
  11. Lee YN. 2006. New flora of Korea II. Kyohak, Seoul. p 278-279.
  12. Kim CG, Kim SI, Shin HK. 1993. Effect of fructooligosaccharide-inulin of Jerusalem artichoke on the growth of intestinal microorganisms of pig. Korean J Food Sci Technol 25: 395-399.
  13. Oscarson S, Sehgelmeble FW. 2002. Chemical syntheses of inulin and levan structures. J Org Chem 67: 8457-8462. https://doi.org/10.1021/jo020341q
  14. Lee EH, Lee YJ, Choi OB, Kang SM. 2007. Effects of combined diet of Jerusalem Artichoke's Inulin, lotus leaf and herb extracts in obesity-induced white rat with fat diet. J Korean Soc Appi Biol Chem 50: 295-303.
  15. National rural resources development institute, RDA. 2006. Seventh revision food composition table, Korea. p 62-63.
  16. Roberfroid M. 2002. Functional food concept and its application to prebiotics. Digest Liver Dis 34: s105-s110. https://doi.org/10.1016/S1590-8658(02)80176-1
  17. Carabin IG, Flamm WG. 1999. Evaluation of safety of inulin and oligofructose as dietary fiber. Regul Toxicol Pharmacol 30: 268-282. https://doi.org/10.1006/rtph.1999.1349
  18. Sung HY, Jeoung HJ, Choi YS, Cho SH, Yun JW. 2004. Effects of chicory inulin and oligosaccharides on lipid metabolism in rat fed a high-cholesterol diet. J Korean Soc Food Sci Nutr 33: 305-310. https://doi.org/10.3746/jkfn.2004.33.2.305
  19. Jhon DY, Kim MH. 1998. Studies on inulase form Jerusalem artichoke. J Korean Soc Food Nutr 17: 205-210.
  20. Chae EM, Chol EH. 1991. Optimization for alcohol fermentation by Kluyveromyces marxianus using Jerusalem artichoke powder. Kor J Appl Microbiol Biotechnol 19: 265-271.
  21. Rosengard BR, Cochrane DE. 1983. Complement-mediated cytolysis: A quick, simple method for determining levels of immunoglobulin E bound to mast cells. J Histochem 31: 441-444. https://doi.org/10.1177/31.3.6827080
  22. Carmichael J, De Graff WG, Gazder AF, Minna JD, Mitchell JB. 1978. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 943-946.
  23. Franceschi C. 1989. Cell proliferation, cell death and aging. Aging 1: 3-15.
  24. Society of toxicology. 2007. The Toxicologist. Reston, USA p 181.
  25. Park TS, Lee TH, Kim HR. 1999. Protective mechanism of glucose against alloxan-induced HIT-T15 cell damage. Korean Diabetes J 23: 530-540.
  26. Gupta AK, Kaur KN. 2000. Carbohydrate reserves in plants: synthesis and regulation. Elsevier, Ludhiana, India. p 223-248.
  27. Bari LD, Valenti D, Pizzuto R, Atlante A, Passarella S. 2007. Phosphoenolpyruvate metabolism in Jerusalem artichoke mitochondria. Biochim Biophys Acta 1767: 281- 294. https://doi.org/10.1016/j.bbabio.2007.02.010
  28. Jhon DY, Kim MH. 1988. Studies on inulase form Jerusalem artichoke. J Korean Soc Food Nutr 17: 205-210.
  29. Scheynius A, Taljedal IB. 1971. On the mechanism of glucose protection against alloxan toxicity. Diabetologia 7: 252-255. https://doi.org/10.1007/BF01211877
  30. Rho HW, Lee JN, Kim HR, Park BH, Park JW. 2000. Protective mechanism of glucose against alloxan-induced cell damage: Pivotal role of ATP. Exp Mol Med 32: 12-17. https://doi.org/10.1038/emm.2000.3
  31. Weaver DC, McDaniel ML, Naber SP, Barry CD, Lacy PE. 1978. Alloxan stimulation and inhibition of insulin release from isolated rat islets of Langerhans. Diabetes 27: 1205-1214. https://doi.org/10.2337/diabetes.27.12.1205
  32. Balcazar-Munoz BR, Martínez-Abundis E, Gonzalez-Ortiz M. 2003. Effect of oral inulin administration on lipid profile and insulin sensitivity in subjects with obesity and dyslipidemia. Rev Med Chil 131: 597-604.
  33. Yeh SL, Lin MS, Chen HL. 2007. Inhibitory effects of a soluble dietary fiber from Amorphophallus konjac cytotoxicity and DNA damage induced by fecal water in Caco-2 cells. Planta Med 73: 1384-1388. https://doi.org/10.1055/s-2007-990228

Cited by

  1. Analysis of Nutritional Components and Physicochemical Properties of Hot-air Dried Jerusalem Artichoke (Helianthus tuberosus L.) Powder vol.46, pp.1, 2014, https://doi.org/10.9721/KJFST.2014.46.1.73
  2. Physicochemical Analysis and Quality Characteristics of Jerusalem Artichoke and Mook Prepared with Jerusalem Artichoke Powder vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.635
  3. Analysis of Nutritional Components and Antioxidant Activity of Roasting Wooung (Burdock, Arctium lappa L.) and Jerusalem Artichoke (Helianthus tuberosus L.) vol.29, pp.6, 2016, https://doi.org/10.9799/ksfan.2016.29.6.870
  4. Antioxidant Activity and Protective Effects of Extracts from Helianthus tuberosus L. Leaves on t-BHP Induced Oxidative Stress in Chang Cells vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1525
  5. The Protective Effects of Chrysanthemum cornarium L. var. spatiosum Extract on HIT-T15 Pancreatic β-Cells against Alloxan-induced Oxidative Stress vol.25, pp.1, 2012, https://doi.org/10.9799/ksfan.2012.25.1.123
  6. Effects of Jerusalem Artichoke (Helianthus tuberosus L.) Extracts on Blood Glucose and Lipid Metabolism in STZ-induced Diabetic Rats vol.47, pp.4, 2015, https://doi.org/10.15324/kjcls.2015.47.4.203
  7. Antioxidative and Antidiabetic Activities of Methanol Extracts from Different Parts of Jerusalem Artichoke (Helianthus tuberosus L.) vol.29, pp.1, 2016, https://doi.org/10.9799/ksfan.2016.29.1.128
  8. Isolation of Citrus Peel Flavonoid Bioconversion Microorganism and Inhibitory Effect on the Oxidative Damage in Pancreatic Beta Cells vol.27, pp.1, 2012, https://doi.org/10.7841/ksbbj.2012.27.1.067
  9. Chemical Composition of the Tuber Essential Oil fromHelianthus tuberosusL. (Asteraceae) vol.11, pp.3, 2014, https://doi.org/10.1002/cbdv.201300323
  10. Anti-diabetic and Hypoglycemic Effect of Eleutherococcus spp. vol.39, pp.12, 2010, https://doi.org/10.3746/jkfn.2010.39.12.1761
  11. A Case of Acute Hyperglycemia Induced by Jerusalem Artichoke in a Patient with Type 2 Diabetes Mellitus vol.17, pp.3, 2016, https://doi.org/10.4093/jkd.2016.17.3.212
  12. Antioxidant Activity and α-Glucosidase Inhibitory Effect of Jerusalem Artichoke (Helianthus tuberosus) Methanol Extracts by Heat Treatment Conditions vol.19, pp.4, 2011, https://doi.org/10.7783/KJMCS.2011.19.4.257
  13. Optimization of the mixed ratio of organic tangerine peel and guarana extracts to suppress fat accumulation vol.17, pp.2, 2010, https://doi.org/10.12729/jbtr.2016.17.2.030
  14. 국우(菊芋) 증자가 혈당강하작용에 미치는 영향 vol.32, pp.5, 2017, https://doi.org/10.6116/kjh.2017.32.5.39
  15. 명월초, 여주 및 울금을 포함하는 돼지감자 복합물의 streptozotocin 유발 당뇨쥐에서 혈당강하 및 체내 지질개선에 미치는 영향 vol.28, pp.6, 2018, https://doi.org/10.5352/jls.2018.28.6.671
  16. Leuconostoc mesenteroidesies 균주를 이용한 여주 추출물 발효 및 생산물의 생리활성 특성 vol.35, pp.4, 2010, https://doi.org/10.12925/jkocs.2018.35.4.1250
  17. 돼지감자 분말 첨가 발효유의 이화학적 특성 vol.37, pp.3, 2010, https://doi.org/10.22424/jmsb.2019.37.3.196
  18. 새만금 간척지와 일반밭 토양에서 뚱딴지(Helianthus tuberosus L.) 재배시 생육 및 이눌린 평가 vol.39, pp.3, 2010, https://doi.org/10.5338/kjea.2020.39.3.22
  19. Effects of Jerusalem Artichoke Extract and Inulin on Blood Glucose Levels and Insulin Secretion in Streptozotocin Induced Diabetic Mice vol.22, pp.1, 2010, https://doi.org/10.4093/jkd.2021.22.1.60