DOI QR코드

DOI QR Code

A Numerical Estimation on Extension of Marine Afforestation Area using Particle Tracking Method

입자추적기법을 이용한 바다숲 조성지의 확장에 관한 수치예측

  • 조재권 (국립수산과학원 남서해수산연구소) ;
  • 김대권 (국립수산과학원 남서해수산연구소) ;
  • 이문옥 (전남대학교 해양기술학부) ;
  • 오태건 (국립수산과학원 자원조성사업단)
  • Received : 2010.07.27
  • Accepted : 2010.09.17
  • Published : 2010.09.30

Abstract

To arrange artificial reefs for marine afforestation effectively, tidal currents were analyzed by numerical experiments, and particle tracking based on tidal currents was carried out to clarify the path of algae spores. The experiments were conducted by the Environmental Fluid Dynamics Code (EFDC), and water column was vertically divided into five layers. Tidal current patterns were showed to be affected by main currents outside of the study area, and two circle currents were observed during the analysis of residual currents. Particle tracking lasted 15 days at three installation places where artificial reefs for marine afforestation could be deployed. According to the results of the particle tracking experiment, particle movements at the No.1 and No. 3 stations were belt types along the coastal line. The No. 2 station documented an ellipse type movement 300~500m from coast line. These results suggest that artificial reefs for marine afforestation should be installed in the belt zones at of the No. 1 and No. 3 stations, and in the ellipse zone at the No. 2 station.

바다숲 조성용 시설물의 효율적인 배치를 위하여 수치실험을 통하여 바다숲 조성 예정지의 조석류에 의한 해수흐름을 분석하였으며, 분석된 해수흐름을 바탕으로 하여 해조포자의 거동을 파악하기 위하여 입자추적실험을 수행하였다. 수치실험에 사용된 수치모형은 EFDC(Environmental Fluids Dynamics Code)를 사용하였으며, 연직방향으로 총 5개 층으로 나누어 실험을 수행하였다. 실험결과, 바다숲 조성대상해역의 해수흐름패턴은 대상해역 바깥쪽의 주류에 크게 영향을 받고 있음을 알 수 있었고, 잔차류를 분석한 결과 크게 두 개의 순환 고리가 형성되어 있음을 확인하였다. 해수흐름의 패턴을 고려하여 3곳의 바다숲 시설물의 설치장소를 선정하고 저층에 입자를 투입하여 15일간 추적을 실시한 결과, 1번과 3번 정점은 해안선에 연하여 띠형태로 시설하며, 2번 정점은 연안에서 약 300 ~ 500m정도 떨어진 곳에 타원의 형태로 시설하는 것이 보다 효율적일 것으로 판단되었다.

Keywords

References

  1. 海の自然再生ワーキンググループ, 海の自然再生ハンドブック (藻場編), ぎょうせい, pp. 1-10, 2003.
  2. 한국해양연구원, 전남다도해형 바다목장 기반조성사업 연구용역보고서(1단계 2차년도), pp. 257-287, 2005.
  3. 국립수산과학원 남해수산연구소, 연안해역 갯 녹음 발생해역 조사보고서, pp. 3-4, 2009.
  4. 寺脇利信, 新井章吾, 川崎保夫, "藻場の分布の制限要因を考慮した造成方法", 水産工学, vol. 32, no. 2, pp. 145-154, 1995.
  5. Terawaki, H. Hasegawa, S. Arai and M. Ohno, "Management-free techniques for restoration of Eisenia and Ecklonia bed along the central Pacific coast of Japan", Appl. Phycol., 13, pp. 13-17, 2001. https://doi.org/10.1023/A:1008135515037
  6. 김평주, 진해만의 해양환경이 적조발생에 미치는 영향, 전남대학교 석사학위논문, pp. 14-17, 2007.
  7. Blumberg A., and G. L. Mellor, "A description of a three-dimensional coastal ocean circulation model. In Three-Dimensional Coastal Ocean Models", N. S. Heaps (Ed.), pp. 1-16, 1987.
  8. Hamrick, J. M., Moustafa, M. Z., Development of the Everglades wetlands hydrodynamic model: 1. Model formulation and physical processes representation, In review, 1996.
  9. Hamrick, J. M., Zarillo, G., Modeling near shore circulation and sediment transport, 4th International Conference on Estuarine and Coastal Modeling, San Diego, CA., 1995.
  10. Di Toro, D. M., Fitzpatrick, J. J., Chesapeake Bay Sediment Flux Model. US Army Corps of Engineers, Waterways Experiment Station, Tech. Report EL-93-2, 1993.
  11. Hamrick, J. M., Preliminary analysis of mixing and dilution of discharges into the York River, a Report to the Amoco Oil Co. The College of William and Mary, Virginia Institute of Marine Science, p. 40, 1992.
  12. Hamrick, J. M., Linking hydrodynamic and biogeochemical transport models for estuarine and coastal waters, Estuarine and Coastal Modeling, Proceedings of the 3rd International Conference, M. L. Spaulding et al, Eds., American Society of Civil Engineers, New York, pp. 591-608, 1994.
  13. Hamrick, J. M., Zarillo, G., Modeling near shore circulation and sediment transport, 4th International Conference on Estuarine and Coastal Modeling, San Diego, CA., 1995.
  14. Shen, J., J. D. Boon, and A. Y. Kuo, A modeling study of a tidal intrusion front and its impact on larval dispersion in the James River estuary, Virginia Estuaries, 22, pp. 681-692, 1999. https://doi.org/10.2307/1353055
  15. Hamrick, J. M., Evaluation of island creation alternatives in the Hampton Flats of the James River, Report to the U. S. Army Corps of Engineers, Norfolk District, 1994.
  16. Hamrick, J. M., Application of the EFDC hydrodynamic model to Lake Okeechobee, a report to South Florida Water Management District, JMHSFWMD- 96-2, John M. Hamrick, Consulting Engineer, Williamsburg, VA, 63p., 1996.
  17. 국립해양조사원, 조류도(부산에서 여수), p. 20, 2002.
  18. 佐々木正 柳瀬良介 渥美敏 青山雅俊, カジメ群落拡大に関する研究(昭和57-58年度指定調査研究総合造成事業報告), 静岡水産試験場伊豆分場資料第153号, p. 19, 1984.
  19. 柳瀬良介.佐々木正.青山雅俊, カジメ群落擴大に関する研究(昭和57年度指定調査研究總合助成事業報告書), 靜岡水試伊豆分場資料第143, pp. 1-14, 1983.
  20. 川崎保夫, メンテナンスフリーのアラメ.カジメ場造成技術, 工業技術會 生物の豊かな環境創造のための藻場造成技術, pp. 4-1-4-23, 1995.
  21. 安藤亘 金山進 中村憲司 村本信夫, "ホンダワラ類の幼胚の到達範囲と藻場マウンドの位置關係について", 海洋開発論文集, 第18卷, pp. 179-183, 2002.

Cited by

  1. Comparison of Seawater Exchange Rate of Small Scale Inner Bays within Jinhae Bay vol.19, pp.1, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.1.74
  2. The Impact of Local Residents' Awareness of Marine Afforestation on the demand for Marine Afforestation Project vol.29, pp.6, 2017, https://doi.org/10.13000/JFMSE.2017.29.6.1860
  3. 입자추적방법을 이용한 새만금 해역의 수리특성 변화 분석 vol.23, pp.6, 2010, https://doi.org/10.9765/kscoe.2011.23.6.442
  4. 수영만으로 유입되는 육상기인 오염물질의 체류특성 모델링 vol.25, pp.1, 2010, https://doi.org/10.7837/kosomes.2019.25.1.045